These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 25050944)

  • 21. A biologically based neural system coordinates the joints and legs of a tetrapod.
    Hunt A; Schmidt M; Fischer M; Quinn R
    Bioinspir Biomim; 2015 Sep; 10(5):055004. PubMed ID: 26351756
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Quadruped Robot with Three-Dimensional Flexible Legs.
    Huang W; Xiao J; Zeng F; Lu P; Lin G; Hu W; Lin X; Wu Y
    Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300658
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Neuromorphic walking gait control.
    Still S; Hepp K; Douglas RJ
    IEEE Trans Neural Netw; 2006 Mar; 17(2):496-508. PubMed ID: 16566475
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Distributed mechanical feedback in arthropods and robots simplifies control of rapid running on challenging terrain.
    Spagna JC; Goldman DI; Lin PC; Koditschek DE; Full RJ
    Bioinspir Biomim; 2007 Mar; 2(1):9-18. PubMed ID: 17671322
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Neural network architecture for cognitive navigation in dynamic environments.
    Villacorta-Atienza JA; Makarov VA
    IEEE Trans Neural Netw Learn Syst; 2013 Dec; 24(12):2075-87. PubMed ID: 24805224
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biomimetic robotics should be based on functional morphology.
    Witte H; Hoffmann H; Hackert R; Schilling C; Fischer MS; Preuschoft H
    J Anat; 2004 May; 204(5):331-42. PubMed ID: 15198698
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Walking motion generation, synthesis, and control for biped robot by using PGRL, LPI, and fuzzy logic.
    Li TH; Su YT; Lai SW; Hu JJ
    IEEE Trans Syst Man Cybern B Cybern; 2011 Jun; 41(3):736-48. PubMed ID: 21095871
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hybrid learning mechanisms under a neural control network for various walking speed generation of a quadruped robot.
    Zhang Y; Thor M; Dilokthanakul N; Dai Z; Manoonpong P
    Neural Netw; 2023 Oct; 167():292-308. PubMed ID: 37666187
    [TBL] [Abstract][Full Text] [Related]  

  • 29. iSpike: a spiking neural interface for the iCub robot.
    Gamez D; Fidjeland AK; Lazdins E
    Bioinspir Biomim; 2012 Jun; 7(2):025008. PubMed ID: 22617339
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Adaptive wavelet neural network control with hysteresis estimation for piezo-positioning mechanism.
    Lin FJ; Shieh HJ; Huang PK
    IEEE Trans Neural Netw; 2006 Mar; 17(2):432-44. PubMed ID: 16566470
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tracking control of a closed-chain five-bar robot with two degrees of freedom by integration of an approximation-based approach and mechanical design.
    Cheng L; Hou ZG; Tan M; Zhang WJ
    IEEE Trans Syst Man Cybern B Cybern; 2012 Oct; 42(5):1470-9. PubMed ID: 22531788
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evolving controllers for a homogeneous system of physical robots: structured cooperation with minimal sensors.
    Quinn M; Smith L; Mayley G; Husbands P
    Philos Trans A Math Phys Eng Sci; 2003 Oct; 361(1811):2321-43. PubMed ID: 14599322
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A hybrid CPG-ZMP control system for stable walking of a simulated flexible spine humanoid robot.
    Or J
    Neural Netw; 2010 Apr; 23(3):452-60. PubMed ID: 20031370
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Stable walking with asymmetric legs.
    Merker A; Rummel J; Seyfarth A
    Bioinspir Biomim; 2011 Dec; 6(4):045004. PubMed ID: 22126858
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Adaptive fuzzy neural network control design via a T-S fuzzy model for a robot manipulator including actuator dynamics.
    Wai RJ; Yang ZW
    IEEE Trans Syst Man Cybern B Cybern; 2008 Oct; 38(5):1326-46. PubMed ID: 18784015
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Neural-adaptive control of single-master-multiple-slaves teleoperation for coordinated multiple mobile manipulators with time-varying communication delays and input uncertainties.
    Li Z; Su CY
    IEEE Trans Neural Netw Learn Syst; 2013 Sep; 24(9):1400-13. PubMed ID: 24808577
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Multicriteria optimization for coordination of redundant robots using a dual neural network.
    Hou ZG; Cheng L; Tan M
    IEEE Trans Syst Man Cybern B Cybern; 2010 Aug; 40(4):1075-87. PubMed ID: 19923050
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dual adaptive dynamic control of mobile robots using neural networks.
    Bugeja MK; Fabri SG; Camilleri L
    IEEE Trans Syst Man Cybern B Cybern; 2009 Feb; 39(1):129-41. PubMed ID: 19150763
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multi-constraint spatial coupling for the body joint quadruped robot and the CPG control method on rough terrain.
    Song G; Ai Q; Tong H; Xu J; Zhu S
    Bioinspir Biomim; 2023 Sep; 18(5):. PubMed ID: 37611613
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Variable stiffness locomotion with guaranteed stability for quadruped robots traversing uneven terrains.
    Zhao X; Wu Y; You Y; Laurenzi A; Tsagarakis N
    Front Robot AI; 2022; 9():874290. PubMed ID: 36105760
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.