BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 25050995)

  • 1. Uncertainty and variability in the exposure reconstruction of chemical incidents--the case of acrylonitrile.
    Huizer D; Ragas AM; Oldenkamp R; van Rooij JG; Huijbregts MA
    Toxicol Lett; 2014 Dec; 231(3):337-43. PubMed ID: 25050995
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomonitoring following a chemical incident with acrylonitrile and ethylene in 2008.
    Leng G; Gries W
    Toxicol Lett; 2014 Dec; 231(3):360-4. PubMed ID: 24960063
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acrylonitrile exposure assessment in the emergency responders of a major train accident in Belgium: a human biomonitoring study.
    Van Nieuwenhuyse A; Fierens S; De Smedt T; De Cremer K; Vleminckx C; Mertens B; Van Overmeire I; Bader M; De Paepe P; Göen T; Nemery B; Schettgen T; Stove C; Van Oyen H; Van Loco J
    Toxicol Lett; 2014 Dec; 231(3):352-9. PubMed ID: 25128591
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a screening approach to interpret human biomonitoring data on volatile organic compounds: reverse dosimetry on biomonitoring data for trichloroethylene.
    Liao KH; Tan YM; Clewell HJ
    Risk Anal; 2007 Oct; 27(5):1223-36. PubMed ID: 18076492
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acrylonitrile exposure in the general population following a major train accident in Belgium: a human biomonitoring study.
    De Smedt T; De Cremer K; Vleminckx C; Fierens S; Mertens B; Van Overmeire I; Bader M; De Paepe P; Göen T; Nemery B; Schettgen T; Stove C; Van Oyen H; Van Loco J; Van Nieuwenhuyse A
    Toxicol Lett; 2014 Dec; 231(3):344-51. PubMed ID: 25223249
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Separating uncertainty and physiological variability in human PBPK modelling: The example of 2-propanol and its metabolite acetone.
    Huizer D; Oldenkamp R; Ragas AM; van Rooij JG; Huijbregts MA
    Toxicol Lett; 2012 Oct; 214(2):154-65. PubMed ID: 22955064
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomarkers in patients admitted to the emergency department after exposure to acrylonitrile in a major railway incident involving bulk chemical material.
    Colenbie S; Buylaert W; Stove C; Deschepper E; Vandewoude K; De Smedt T; Bader M; Göen T; Van Nieuwenhuyse A; De Paepe P
    Int J Hyg Environ Health; 2017 Mar; 220(2 Pt A):261-270. PubMed ID: 28110842
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of a physiologically based pharmacokinetic model to identify exposures consistent with human biomonitoring data for chloroform.
    Tan YM; Liao KH; Conolly RB; Blount BC; Mason AM; Clewell HJ
    J Toxicol Environ Health A; 2006 Sep; 69(18):1727-56. PubMed ID: 16864423
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Follow-up biomonitoring after accidental exposure to acrylonitrile:- implications for protein adducts as a dose monitor for short-term exposures.
    Bader M; Wrbitzky R
    Toxicol Lett; 2006 Apr; 162(2-3):125-31. PubMed ID: 16280213
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reverse dosimetry modeling of toluene exposure concentrations based on biomonitoring levels from the Canadian health measures survey.
    Tohon H; Nong A; Moreau M; Valcke M; Haddad S
    J Toxicol Environ Health A; 2018; 81(20):1066-1082. PubMed ID: 30365389
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biological monitoring to assess dermal exposure to ethylene oxide vapours during an incidental release.
    Boogaard PJ; van Puijvelde MJ; Urbanus JH
    Toxicol Lett; 2014 Dec; 231(3):387-90. PubMed ID: 24882394
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Short-term health effects in the general population following a major train accident with acrylonitrile in Belgium.
    Simons K; De Smedt T; Stove C; De Paepe P; Bader M; Nemery B; Vleminckx C; De Cremer K; Van Overmeire I; Fierens S; Mertens B; Göen T; Schettgen T; Van Oyen H; Van Loco J; Van Nieuwenhuyse A
    Environ Res; 2016 Jul; 148():256-263. PubMed ID: 27085497
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Testing the coherence between occupational exposure limits for inhalation and their biological limit values with a generalized PBPK-model: the case of 2-propanol and acetone.
    Huizer D; Huijbregts MA; van Rooij JG; Ragas AM
    Regul Toxicol Pharmacol; 2014 Aug; 69(3):408-15. PubMed ID: 24852492
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reconstructing exposures from biomarkers using exposure-pharmacokinetic modeling--A case study with carbaryl.
    Brown K; Phillips M; Grulke C; Yoon M; Young B; McDougall R; Leonard J; Lu J; Lefew W; Tan YM
    Regul Toxicol Pharmacol; 2015 Dec; 73(3):689-98. PubMed ID: 26545325
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using population physiologically based pharmacokinetic modeling to determine optimal sampling times and to interpret biological exposure markers: The example of occupational exposure to styrene.
    Verner MA; McDougall R; Johanson G
    Toxicol Lett; 2012 Sep; 213(2):299-304. PubMed ID: 22677344
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biological exposure indicators: quantification of biological variability using toxicokinetic modeling.
    Truchon G; Tardif R; Droz PO; Charest-Tardif G; Pierrehumbert G
    J Occup Environ Hyg; 2006 Mar; 3(3):137-43. PubMed ID: 16464817
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Blood concentrations of acrylonitrile in humans after oral administration extrapolated from in vivo rat pharmacokinetics, in vitro human metabolism, and physiologically based pharmacokinetic modeling.
    Takano R; Murayama N; Horiuchi K; Kitajima M; Kumamoto M; Shono F; Yamazaki H
    Regul Toxicol Pharmacol; 2010 Nov; 58(2):252-8. PubMed ID: 20600458
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physiologically based pharmacokinetic model parameter estimation and sensitivity and variability analyses for acrylonitrile disposition in humans.
    Sweeney LM; Gargas ML; Strother DE; Kedderis GL
    Toxicol Sci; 2003 Jan; 71(1):27-40. PubMed ID: 12520073
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human biomonitoring after chemical incidents and during short-term maintenance work as a tool for exposure analysis and assessment.
    Bader M; Van Weyenbergh T; Verwerft E; Van Pul J; Lang S; Oberlinner C
    Toxicol Lett; 2014 Dec; 231(3):328-36. PubMed ID: 25290578
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A generic, cross-chemical predictive PBTK model with multiple entry routes running as application in MS Excel; design of the model and comparison of predictions with experimental results.
    Jongeneelen FJ; Berge WF
    Ann Occup Hyg; 2011 Oct; 55(8):841-64. PubMed ID: 21998005
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.