BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 25050995)

  • 21. Computational toxicology of chloroform: reverse dosimetry using Bayesian inference, Markov chain Monte Carlo simulation, and human biomonitoring data.
    Lyons MA; Yang RS; Mayeno AN; Reisfeld B
    Environ Health Perspect; 2008 Aug; 116(8):1040-6. PubMed ID: 18709138
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Estimation of toluene exposure in air from BMA (S-benzylmercapturic acid) urinary measures using a reverse dosimetry approach based on physiologically pharmacokinetic modeling.
    Tohon H; Valcke M; Aranda-Rodriguez R; Nong A; Haddad S
    Regul Toxicol Pharmacol; 2021 Mar; 120():104860. PubMed ID: 33406392
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biological monitoring guidance values for chemical incidents.
    Cocker J; Jones K; Bos PM
    Toxicol Lett; 2014 Dec; 231(3):324-7. PubMed ID: 24973493
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Impact of biological and environmental variabilities on biological monitoring--an approach using toxicokinetic models.
    Berthet A; de Batz A; Tardif R; Charest-Tardif G; Truchon G; Vernez D; Droz PO
    J Occup Environ Hyg; 2010 Mar; 7(3):177-84. PubMed ID: 20063230
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Separation of uncertainty and interindividual variability in human exposure modeling.
    Ragas AM; Brouwer FP; Büchner FL; Hendriks HW; Huijbregts MA
    J Expo Sci Environ Epidemiol; 2009 Feb; 19(2):201-12. PubMed ID: 18398446
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Variability in biological exposure indices using physiologically based pharmacokinetic modeling and Monte Carlo simulation.
    Thomas RS; Bigelow PL; Keefe TJ; Yang RS
    Am Ind Hyg Assoc J; 1996 Jan; 57(1):23-32. PubMed ID: 8588550
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reverse dosimetry: interpreting trihalomethanes biomonitoring data using physiologically based pharmacokinetic modeling.
    Tan YM; Liao KH; Clewell HJ
    J Expo Sci Environ Epidemiol; 2007 Nov; 17(7):591-603. PubMed ID: 17108893
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Modeling the imprecision in prospective dosimetry of internal exposure to uranium.
    Davesne E; Chojnacki E; Paquet F; Blanchardon E
    Health Phys; 2009 Feb; 96(2):144-54. PubMed ID: 19131736
    [TBL] [Abstract][Full Text] [Related]  

  • 29. PBTK model for assessment of operator exposure to haloxyfop using human biomonitoring and toxicokinetic data.
    Cooper AB; Aggarwal M; Bartels MJ; Morriss A; Terry C; Lord GA; Gant TW
    Regul Toxicol Pharmacol; 2019 Mar; 102():1-12. PubMed ID: 30543831
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Refinement and verification of the physiologically based dosimetry description for acrylonitrile in rats.
    Kedderis GL; Teo SK; Batra R; Held SD; Gargas ML
    Toxicol Appl Pharmacol; 1996 Oct; 140(2):422-35. PubMed ID: 8887460
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Determination of tissue partition coefficients for volatile tissue-reactive chemicals: acrylonitrile and its metabolite 2-cyanoethylene oxide.
    Teo SK; Kedderis GL; Gargas ML
    Toxicol Appl Pharmacol; 1994 Sep; 128(1):92-6. PubMed ID: 8079360
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Chemical-specific screening criteria for interpretation of biomonitoring data for volatile organic compounds (VOCs)--application of steady-state PBPK model solutions.
    Aylward LL; Kirman CR; Blount BC; Hays SM
    Regul Toxicol Pharmacol; 2010 Oct; 58(1):33-44. PubMed ID: 20685286
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characterizing uncertainty and variability in physiologically based pharmacokinetic models: state of the science and needs for research and implementation.
    Barton HA; Chiu WA; Setzer RW; Andersen ME; Bailer AJ; Bois FY; Dewoskin RS; Hays S; Johanson G; Jones N; Loizou G; Macphail RC; Portier CJ; Spendiff M; Tan YM
    Toxicol Sci; 2007 Oct; 99(2):395-402. PubMed ID: 17483121
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Physiologically-based pharmacokinetic modeling of benzene in humans: a Bayesian approach.
    Yokley K; Tran HT; Pekari K; Rappaport S; Riihimaki V; Rothman N; Waidyanatha S; Schlosser PM
    Risk Anal; 2006 Aug; 26(4):925-43. PubMed ID: 16948686
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Biological monitoring of occupational exposure to acrylonitrile].
    Perbellini L; Princivalle A; Cerpelloni M; Caprini A
    G Ital Med Lav Ergon; 2003; 25 Suppl(3):41-2. PubMed ID: 14979075
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A multimedia environmental model of chemical distribution: fate, transport, and uncertainty analysis.
    Luo Y; Yang X
    Chemosphere; 2007 Jan; 66(8):1396-407. PubMed ID: 17095045
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Use of Markov Chain Monte Carlo analysis with a physiologically-based pharmacokinetic model of methylmercury to estimate exposures in US women of childbearing age.
    Allen BC; Hack CE; Clewell HJ
    Risk Anal; 2007 Aug; 27(4):947-59. PubMed ID: 17958503
    [TBL] [Abstract][Full Text] [Related]  

  • 38. PopGen: A virtual human population generator.
    McNally K; Cotton R; Hogg A; Loizou G
    Toxicology; 2014 Jan; 315():70-85. PubMed ID: 23876857
    [TBL] [Abstract][Full Text] [Related]  

  • 39. PBPK models in risk assessment--A focus on chloroprene.
    DeWoskin RS
    Chem Biol Interact; 2007 Mar; 166(1-3):352-9. PubMed ID: 17324392
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterization of the human kinetic adjustment factor for the health risk assessment of environmental contaminants.
    Valcke M; Krishnan K
    J Appl Toxicol; 2014 Mar; 34(3):227-40. PubMed ID: 24038072
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.