These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 25051019)
1. Osteogenic potential for replacing cells in rat cranial defects implanted with a DNA/protamine complex paste. Toda M; Ohno J; Shinozaki Y; Ozaki M; Fukushima T Bone; 2014 Oct; 67():237-45. PubMed ID: 25051019 [TBL] [Abstract][Full Text] [Related]
2. Photothermal stress triggered by near infrared-irradiated carbon nanotubes promotes bone deposition in rat calvarial defects. Yanagi T; Kajiya H; Kawaguchi M; Kido H; Fukushima T J Biomater Appl; 2015 Mar; 29(8):1109-18. PubMed ID: 25336291 [TBL] [Abstract][Full Text] [Related]
3. Salmon DNA Accelerates Bone Regeneration by Inducing Osteoblast Migration. Sato A; Kajiya H; Mori N; Sato H; Fukushima T; Kido H; Ohno J PLoS One; 2017; 12(1):e0169522. PubMed ID: 28060874 [TBL] [Abstract][Full Text] [Related]
4. Oxysterols enhance osteoblast differentiation in vitro and bone healing in vivo. Aghaloo TL; Amantea CM; Cowan CM; Richardson JA; Wu BM; Parhami F; Tetradis S J Orthop Res; 2007 Nov; 25(11):1488-97. PubMed ID: 17568450 [TBL] [Abstract][Full Text] [Related]
5. Enhanced reconstruction of rat calvarial defects achieved by plasma-treated electrospun scaffolds and induced pluripotent stem cells. Ardeshirylajimi A; Dinarvand P; Seyedjafari E; Langroudi L; Adegani FJ; Soleimani M Cell Tissue Res; 2013 Dec; 354(3):849-60. PubMed ID: 23955642 [TBL] [Abstract][Full Text] [Related]
6. Osteogenic properties of starch poly(ε-caprolactone) (SPCL) fiber meshes loaded with osteoblast-like cells in a rat critical-sized cranial defect. Link DP; Gardel LS; Correlo VM; Gomes ME; Reis RL J Biomed Mater Res A; 2013 Nov; 101(11):3059-65. PubMed ID: 23505136 [TBL] [Abstract][Full Text] [Related]
7. Effect of nano-structured bioceramic surface on osteogenic differentiation of adipose derived stem cells. Xia L; Lin K; Jiang X; Fang B; Xu Y; Liu J; Zeng D; Zhang M; Zhang X; Chang J; Zhang Z Biomaterials; 2014 Oct; 35(30):8514-27. PubMed ID: 25002263 [TBL] [Abstract][Full Text] [Related]
8. Antibody-mediated osseous regeneration: the early events in the healing response. Freire MO; Kim HK; Kook JK; Nguyen A; Zadeh HH Tissue Eng Part A; 2013 May; 19(9-10):1165-74. PubMed ID: 23190409 [TBL] [Abstract][Full Text] [Related]
9. Bone regeneration in rat calvarial defects implanted with fibrous scaffolds composed of a mixture of silicate and borate bioactive glasses. Gu Y; Huang W; Rahaman MN; Day DE Acta Biomater; 2013 Nov; 9(11):9126-36. PubMed ID: 23827095 [TBL] [Abstract][Full Text] [Related]
10. The effect of the local delivery of alendronate on human adipose-derived stem cell-based bone regeneration. Wang CZ; Chen SM; Chen CH; Wang CK; Wang GJ; Chang JK; Ho ML Biomaterials; 2010 Nov; 31(33):8674-83. PubMed ID: 20719378 [TBL] [Abstract][Full Text] [Related]
11. Effect of recombinant human bone morphogenetic protein-2, -4, and -7 on bone formation in rat calvarial defects. Hyun SJ; Han DK; Choi SH; Chai JK; Cho KS; Kim CK; Kim CS J Periodontol; 2005 Oct; 76(10):1667-74. PubMed ID: 16253088 [TBL] [Abstract][Full Text] [Related]
12. IL-17 inhibits osteoblast differentiation and bone regeneration in rat. Kim YG; Park JW; Lee JM; Suh JY; Lee JK; Chang BS; Um HS; Kim JY; Lee Y Arch Oral Biol; 2014 Sep; 59(9):897-905. PubMed ID: 24907519 [TBL] [Abstract][Full Text] [Related]
13. In vivo differentiation of undifferentiated human adipose tissue-derived mesenchymal stem cells in critical-sized calvarial bone defects. Choi JW; Park EJ; Shin HS; Shin IS; Ra JC; Koh KS Ann Plast Surg; 2014 Feb; 72(2):225-33. PubMed ID: 23221992 [TBL] [Abstract][Full Text] [Related]
14. Effect of DNA/protamine complex paste on bone augmentation of the mandible: A pilot study on dogs. Sato A; Yanagi T; Yamaguchi Y; Taniguchi Y; Kido H; Ohno J Arch Oral Biol; 2020 Jul; 115():104729. PubMed ID: 32387858 [TBL] [Abstract][Full Text] [Related]
15. Mesenchymal stem cells cultured on a collagen scaffold: In vitro osteogenic differentiation. Donzelli E; Salvadè A; Mimo P; Viganò M; Morrone M; Papagna R; Carini F; Zaopo A; Miloso M; Baldoni M; Tredici G Arch Oral Biol; 2007 Jan; 52(1):64-73. PubMed ID: 17049335 [TBL] [Abstract][Full Text] [Related]
16. Integration of a calcined bovine bone and BMSC-sheet 3D scaffold and the promotion of bone regeneration in large defects. Liu Y; Ming L; Luo H; Liu W; Zhang Y; Liu H; Jin Y Biomaterials; 2013 Dec; 34(38):9998-10006. PubMed ID: 24079891 [TBL] [Abstract][Full Text] [Related]
17. Low power laser irradiation and human adipose-derived stem cell treatments promote bone regeneration in critical-sized calvarial defects in rats. Wang YH; Wu JY; Kong SC; Chiang MH; Ho ML; Yeh ML; Chen CH PLoS One; 2018; 13(4):e0195337. PubMed ID: 29621288 [TBL] [Abstract][Full Text] [Related]
18. SIRT6 regulates osteogenic differentiation of rat bone marrow mesenchymal stem cells partially via suppressing the nuclear factor-κB signaling pathway. Sun H; Wu Y; Fu D; Liu Y; Huang C Stem Cells; 2014 Jul; 32(7):1943-55. PubMed ID: 24510807 [TBL] [Abstract][Full Text] [Related]
19. Repair of calvarial defects with customized tissue-engineered bone grafts I. Evaluation of osteogenesis in a three-dimensional culture system. Schantz JT; Teoh SH; Lim TC; Endres M; Lam CX; Hutmacher DW Tissue Eng; 2003; 9 Suppl 1():S113-26. PubMed ID: 14511475 [TBL] [Abstract][Full Text] [Related]
20. N-acetyl cysteine as an osteogenesis-enhancing molecule for bone regeneration. Yamada M; Tsukimura N; Ikeda T; Sugita Y; Att W; Kojima N; Kubo K; Ueno T; Sakurai K; Ogawa T Biomaterials; 2013 Aug; 34(26):6147-56. PubMed ID: 23711675 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]