These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
224 related articles for article (PubMed ID: 25051177)
1. Current compound coverage of the kinome. Hu Y; Furtmann N; Bajorath J J Med Chem; 2015 Jan; 58(1):30-40. PubMed ID: 25051177 [TBL] [Abstract][Full Text] [Related]
2. Novel kinase inhibitors by reshuffling ligand functionalities across the human kinome. Vidović D; Muskal SM; Schürer SC J Chem Inf Model; 2012 Dec; 52(12):3107-15. PubMed ID: 23121521 [TBL] [Abstract][Full Text] [Related]
3. Computational proteomics of biomolecular interactions in the sequence and structure space of the tyrosine kinome: deciphering the molecular basis of the kinase inhibitors selectivity. Verkhivker GM Proteins; 2007 Mar; 66(4):912-29. PubMed ID: 17173284 [TBL] [Abstract][Full Text] [Related]
4. Conformational analysis of the DFG-out kinase motif and biochemical profiling of structurally validated type II inhibitors. Vijayan RS; He P; Modi V; Duong-Ly KC; Ma H; Peterson JR; Dunbrack RL; Levy RM J Med Chem; 2015 Jan; 58(1):466-79. PubMed ID: 25478866 [TBL] [Abstract][Full Text] [Related]
5. Extending kinome coverage by analysis of kinase inhibitor broad profiling data. Jacoby E; Tresadern G; Bembenek S; Wroblowski B; Buyck C; Neefs JM; Rassokhin D; Poncelet A; Hunt J; van Vlijmen H Drug Discov Today; 2015 Jun; 20(6):652-8. PubMed ID: 25596550 [TBL] [Abstract][Full Text] [Related]
6. Advancing the kinase field: new targets and second generation inhibitors. Laufer S; Bajorath J J Med Chem; 2015 Jan; 58(1):1. PubMed ID: 25490234 [No Abstract] [Full Text] [Related]
7. Assessing Scaffold Diversity of Kinase Inhibitors Using Alternative Scaffold Concepts and Estimating the Scaffold Hopping Potential for Different Kinases. Dimova D; Bajorath J Molecules; 2017 May; 22(5):. PubMed ID: 28467353 [TBL] [Abstract][Full Text] [Related]
8. What general conclusions can we draw from kinase profiling data sets? Sutherland JJ; Gao C; Cahya S; Vieth M Biochim Biophys Acta; 2013 Jul; 1834(7):1425-33. PubMed ID: 23333421 [TBL] [Abstract][Full Text] [Related]
9. Substituted 2-arylbenzothiazoles as kinase inhibitors: hit-to-lead optimization. Tasler S; Müller O; Wieber T; Herz T; Pegoraro S; Saeb W; Lang M; Krauss R; Totzke F; Zirrgiebel U; Ehlert JE; Kubbutat MH; Schächtele C Bioorg Med Chem; 2009 Sep; 17(18):6728-37. PubMed ID: 19692247 [TBL] [Abstract][Full Text] [Related]
10. Identifying representative kinases for inhibitor evaluation via systematic analysis of compound-based target relationships. Laufkötter O; Laufer S; Bajorath J Eur J Med Chem; 2020 Oct; 204():112641. PubMed ID: 32745818 [TBL] [Abstract][Full Text] [Related]
11. Structure-based design and synthesis of novel pseudosaccharine derivatives as antiproliferative agents and kinase inhibitors. Elsayed MS; El-Araby ME; Serya RA; El-Khatib AH; Linscheid MW; Abouzid KA Eur J Med Chem; 2013 Mar; 61():122-31. PubMed ID: 23063746 [TBL] [Abstract][Full Text] [Related]
12. Data structures for computational compound promiscuity analysis and exemplary applications to inhibitors of the human kinome. Miljković F; Bajorath J J Comput Aided Mol Des; 2020 Jan; 34(1):1-10. PubMed ID: 31792884 [TBL] [Abstract][Full Text] [Related]
13. Ethyl 2-(benzylidene)-7-methyl-3-oxo-2,3-dihydro-5H-thiazolo[3,2-a]pyrimidine-6-carboxylate analogues as a new scaffold for protein kinase casein kinase 2 inhibitor. Jin CH; Jun KY; Lee E; Kim S; Kwon Y; Kim K; Na Y Bioorg Med Chem; 2014 Sep; 22(17):4553-65. PubMed ID: 25131958 [TBL] [Abstract][Full Text] [Related]
14. Indolinones as promising scaffold as kinase inhibitors: a review. Prakash CR; Raja S Mini Rev Med Chem; 2012 Feb; 12(2):98-119. PubMed ID: 22372601 [TBL] [Abstract][Full Text] [Related]
15. Identification and optimisation of novel and selective small molecular weight kinase inhibitors of mTOR. Menear KA; Gomez S; Malagu K; Bailey C; Blackburn K; Cockcroft XL; Ewen S; Fundo A; Le Gall A; Hermann G; Sebastian L; Sunose M; Presnot T; Torode E; Hickson I; Martin NM; Smith GC; Pike KG Bioorg Med Chem Lett; 2009 Oct; 19(20):5898-901. PubMed ID: 19733066 [TBL] [Abstract][Full Text] [Related]
16. Development of new fluorescent xanthines as kinase inhibitors. Kim D; Jun H; Lee H; Hong SS; Hong S Org Lett; 2010 Mar; 12(6):1212-5. PubMed ID: 20184370 [TBL] [Abstract][Full Text] [Related]
17. Mapping Biological Activities to Different Types of Molecular Scaffolds: Exemplary Application to Protein Kinase Inhibitors. Dimova D; Bajorath J Methods Mol Biol; 2018; 1825():327-337. PubMed ID: 30334211 [TBL] [Abstract][Full Text] [Related]
18. Characterization of the novel broad-spectrum kinase inhibitor CTx-0294885 as an affinity reagent for mass spectrometry-based kinome profiling. Zhang L; Holmes IP; Hochgräfe F; Walker SR; Ali NA; Humphrey ES; Wu J; de Silva M; Kersten WJ; Connor T; Falk H; Allan L; Street IP; Bentley JD; Pilling PA; Monahan BJ; Peat TS; Daly RJ J Proteome Res; 2013 Jul; 12(7):3104-16. PubMed ID: 23692254 [TBL] [Abstract][Full Text] [Related]
19. Kinome-Wide Profiling Prediction of Small Molecules. Sorgenfrei FA; Fulle S; Merget B ChemMedChem; 2018 Mar; 13(6):495-499. PubMed ID: 28544552 [TBL] [Abstract][Full Text] [Related]
20. Mapping of inhibitors and activity data to the human kinome and exploring promiscuity from a ligand and target perspective. Hu Y; Kunimoto R; Bajorath J Chem Biol Drug Des; 2017 Jun; 89(6):834-845. PubMed ID: 27933727 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]