BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 25051211)

  • 21. Acetyl-lysine analog peptides as mechanistic probes of protein deacetylases.
    Smith BC; Denu JM
    J Biol Chem; 2007 Dec; 282(51):37256-65. PubMed ID: 17951578
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transition state analysis of thymidine hydrolysis by human thymidine phosphorylase.
    Schwartz PA; Vetticatt MJ; Schramm VL
    J Am Chem Soc; 2010 Sep; 132(38):13425-33. PubMed ID: 20804144
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Kinetic isotope effects for RNA cleavage by 2'-O- transphosphorylation: nucleophilic activation by specific base.
    Harris ME; Dai Q; Gu H; Kellerman DL; Piccirilli JA; Anderson VE
    J Am Chem Soc; 2010 Aug; 132(33):11613-21. PubMed ID: 20669950
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Transition state structure of 5'-methylthioadenosine/S-adenosylhomocysteine nucleosidase from Escherichia coli and its similarity to transition state analogues.
    Singh V; Lee JE; Núñez S; Howell PL; Schramm VL
    Biochemistry; 2005 Sep; 44(35):11647-59. PubMed ID: 16128565
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hydrolysis of ADP-Ribosylation by Macrodomains.
    Posavec Marjanovic M; Jankevicius G; Ahel I
    Methods Mol Biol; 2018; 1813():215-223. PubMed ID: 30097870
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The 39-kDa poly(ADP-ribose) glycohydrolase ARH3 hydrolyzes O-acetyl-ADP-ribose, a product of the Sir2 family of acetyl-histone deacetylases.
    Ono T; Kasamatsu A; Oka S; Moss J
    Proc Natl Acad Sci U S A; 2006 Nov; 103(45):16687-91. PubMed ID: 17075046
    [TBL] [Abstract][Full Text] [Related]  

  • 27. SIR2: the biochemical mechanism of NAD(+)-dependent protein deacetylation and ADP-ribosyl enzyme intermediates.
    Sauve AA; Schramm VL
    Curr Med Chem; 2004 Apr; 11(7):807-26. PubMed ID: 15078167
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The conserved macrodomains of the non-structural proteins of Chikungunya virus and other pathogenic positive strand RNA viruses function as mono-ADP-ribosylhydrolases.
    Eckei L; Krieg S; Bütepage M; Lehmann A; Gross A; Lippok B; Grimm AR; Kümmerer BM; Rossetti G; Lüscher B; Verheugd P
    Sci Rep; 2017 Feb; 7():41746. PubMed ID: 28150709
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Kinetic isotope effect characterization of the transition state for oxidized nicotinamide adenine dinucleotide hydrolysis by pertussis toxin.
    Scheuring J; Schramm VL
    Biochemistry; 1997 Apr; 36(15):4526-34. PubMed ID: 9109661
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Recycling nicotinamide. The transition-state structure of human nicotinamide phosphoribosyltransferase.
    Burgos ES; Vetticatt MJ; Schramm VL
    J Am Chem Soc; 2013 Mar; 135(9):3485-93. PubMed ID: 23373462
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sir2 protein deacetylases: evidence for chemical intermediates and functions of a conserved histidine.
    Smith BC; Denu JM
    Biochemistry; 2006 Jan; 45(1):272-82. PubMed ID: 16388603
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Use of substrate analogs and mutagenesis to study substrate binding and catalysis in the Sir2 family of NAD-dependent protein deacetylases.
    Khan AN; Lewis PN
    J Biol Chem; 2006 Apr; 281(17):11702-11. PubMed ID: 16520376
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Splicing regulates NAD metabolite binding to histone macroH2A.
    Kustatscher G; Hothorn M; Pugieux C; Scheffzek K; Ladurner AG
    Nat Struct Mol Biol; 2005 Jul; 12(7):624-5. PubMed ID: 15965484
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structural identification of 2'- and 3'-O-acetyl-ADP-ribose as novel metabolites derived from the Sir2 family of beta -NAD+-dependent histone/protein deacetylases.
    Jackson MD; Denu JM
    J Biol Chem; 2002 May; 277(21):18535-44. PubMed ID: 11893743
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transition state analysis of the arsenolytic depyrimidination of thymidine by human thymidine phosphorylase.
    Schwartz PA; Vetticatt MJ; Schramm VL
    Biochemistry; 2011 Mar; 50(8):1412-20. PubMed ID: 21222488
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Emerging roles of ADP-ribosyl-acceptor hydrolases (ARHs) in tumorigenesis and cell death pathways.
    Bu X; Kato J; Moss J
    Biochem Pharmacol; 2019 Sep; 167():44-49. PubMed ID: 30267646
    [TBL] [Abstract][Full Text] [Related]  

  • 37. ADP-ribosylhydrolases: from DNA damage repair to COVID-19.
    Yu L; Liu X; Yu X
    J Zhejiang Univ Sci B; 2021 Jan; 22(1):21-30. PubMed ID: 33448184
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Silent information regulator 2 family of NAD- dependent histone/protein deacetylases generates a unique product, 1-O-acetyl-ADP-ribose.
    Tanner KG; Landry J; Sternglanz R; Denu JM
    Proc Natl Acad Sci U S A; 2000 Dec; 97(26):14178-82. PubMed ID: 11106374
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Transition-state structure for the ADP-ribosylation of recombinant Gialpha1 subunits by pertussis toxin.
    Scheuring J; Berti PJ; Schramm VL
    Biochemistry; 1998 Mar; 37(9):2748-58. PubMed ID: 9485425
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bypassing Sir2 and O-acetyl-ADP-ribose in transcriptional silencing.
    Chou CC; Li YC; Gartenberg MR
    Mol Cell; 2008 Sep; 31(5):650-9. PubMed ID: 18775325
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.