BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 25051211)

  • 41.
    Howe GW; van der Donk WA
    J Am Chem Soc; 2018 Dec; 140(51):17820-17824. PubMed ID: 30525552
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The SARS-CoV-2 Conserved Macrodomain Is a Mono-ADP-Ribosylhydrolase.
    Alhammad YMO; Kashipathy MM; Roy A; Gagné JP; McDonald P; Gao P; Nonfoux L; Battaile KP; Johnson DK; Holmstrom ED; Poirier GG; Lovell S; Fehr AR
    J Virol; 2021 Jan; 95(3):. PubMed ID: 33158944
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Getting a grip on O-acetyl-ADP-ribose.
    Hoff KG; Wolberger C
    Nat Struct Mol Biol; 2005 Jul; 12(7):560-1. PubMed ID: 15999106
    [No Abstract]   [Full Text] [Related]  

  • 44. The catalytic mechanism of fluoroacetate dehalogenase: a computational exploration of biological dehalogenation.
    Kamachi T; Nakayama T; Shitamichi O; Jitsumori K; Kurihara T; Esaki N; Yoshizawa K
    Chemistry; 2009 Jul; 15(30):7394-403. PubMed ID: 19551770
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Transition state analysis of acid-catalyzed dAMP hydrolysis.
    McCann JA; Berti PJ
    J Am Chem Soc; 2007 Jun; 129(22):7055-64. PubMed ID: 17497857
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Expanding functions of intracellular resident mono-ADP-ribosylation in cell physiology.
    Feijs KL; Verheugd P; Lüscher B
    FEBS J; 2013 Aug; 280(15):3519-29. PubMed ID: 23639026
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Conserved enzymatic production and biological effect of O-acetyl-ADP-ribose by silent information regulator 2-like NAD+-dependent deacetylases.
    Borra MT; O'Neill FJ; Jackson MD; Marshall B; Verdin E; Foltz KR; Denu JM
    J Biol Chem; 2002 Apr; 277(15):12632-41. PubMed ID: 11812793
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Transition state structure of E. coli tRNA-specific adenosine deaminase.
    Luo M; Schramm VL
    J Am Chem Soc; 2008 Feb; 130(8):2649-55. PubMed ID: 18251477
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Molecular mechanism of ADP-ribose hydrolysis by human NUDT5 from structural and kinetic studies.
    Zha M; Guo Q; Zhang Y; Yu B; Ou Y; Zhong C; Ding J
    J Mol Biol; 2008 Jun; 379(3):568-78. PubMed ID: 18462755
    [TBL] [Abstract][Full Text] [Related]  

  • 50. An uncharacterized FMAG_01619 protein from Fusobacterium mortiferum ATCC 9817 demonstrates that some bacterial macrodomains can also act as poly-ADP-ribosylhydrolases.
    García-Saura AG; Zapata-Pérez R; Hidalgo JF; Cabanes J; Gil-Ortiz F; Sánchez-Ferrer Á
    Sci Rep; 2019 Mar; 9(1):3230. PubMed ID: 30824723
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Transition-state structures for the native dual-specific phosphatase VHR and D92N and S131A mutants. Contributions to the driving force for catalysis.
    Hengge AC; Denu JM; Dixon JE
    Biochemistry; 1996 Jun; 35(22):7084-92. PubMed ID: 8679534
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effect of Zn2+ binding and enzyme active site on the transition state for RNA 2'-O-transphosphorylation interpreted through kinetic isotope effects.
    Chen H; Piccirilli JA; Harris ME; York DM
    Biochim Biophys Acta; 2015 Nov; 1854(11):1795-800. PubMed ID: 25812974
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Determining the transition-state structure for different SN2 reactions using experimental nucleophile carbon and secondary alpha-deuterium kinetic isotope effects and theory.
    Westaway KC; Fang YR; MacMillar S; Matsson O; Poirier RA; Islam SM
    J Phys Chem A; 2008 Oct; 112(41):10264-73. PubMed ID: 18816038
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Transition state structures and the roles of catalytic residues in GAP-facilitated GTPase of Ras as elucidated by (18)O kinetic isotope effects.
    Du X; Sprang SR
    Biochemistry; 2009 Jun; 48(21):4538-47. PubMed ID: 19610677
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Macrodomain-containing proteins are new mono-ADP-ribosylhydrolases.
    Rosenthal F; Feijs KL; Frugier E; Bonalli M; Forst AH; Imhof R; Winkler HC; Fischer D; Caflisch A; Hassa PO; Lüscher B; Hottiger MO
    Nat Struct Mol Biol; 2013 Apr; 20(4):502-7. PubMed ID: 23474714
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Mechanism of nicotinamide inhibition and transglycosidation by Sir2 histone/protein deacetylases.
    Jackson MD; Schmidt MT; Oppenheimer NJ; Denu JM
    J Biol Chem; 2003 Dec; 278(51):50985-98. PubMed ID: 14522996
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Mechanistic evidence for a front-side, SNi-type reaction in a retaining glycosyltransferase.
    Lee SS; Hong SY; Errey JC; Izumi A; Davies GJ; Davis BG
    Nat Chem Biol; 2011 Aug; 7(9):631-8. PubMed ID: 21822275
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Probing the transition states of four glucoside hydrolyses with 13C kinetic isotope effects measured at natural abundance by NMR spectroscopy.
    Lee JK; Bain AD; Berti PJ
    J Am Chem Soc; 2004 Mar; 126(12):3769-76. PubMed ID: 15038730
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Structural insights into the Thermus thermophilus ADP-ribose pyrophosphatase mechanism via crystal structures with the bound substrate and metal.
    Yoshiba S; Ooga T; Nakagawa N; Shibata T; Inoue Y; Yokoyama S; Kuramitsu S; Masui R
    J Biol Chem; 2004 Aug; 279(35):37163-74. PubMed ID: 15210687
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Mono-ADP-Ribosylhydrolase Assays.
    Abplanalp J; Hopp AK; Hottiger MO
    Methods Mol Biol; 2018; 1813():205-213. PubMed ID: 30097869
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.