These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 25051422)

  • 1. Toward plasmonics with nanometer precision: nonlinear optics of helium-ion milled gold nanoantennas.
    Kollmann H; Piao X; Esmann M; Becker SF; Hou D; Huynh C; Kautschor LO; Bösker G; Vieker H; Beyer A; Gölzhäuser A; Park N; Vogelgesang R; Silies M; Lienau C
    Nano Lett; 2014 Aug; 14(8):4778-84. PubMed ID: 25051422
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrafast nonlinear control of progressively loaded, single plasmonic nanoantennas fabricated using helium ion milling.
    Wang Y; Abb M; Boden SA; Aizpurua J; de Groot CH; Muskens OL
    Nano Lett; 2013; 13(11):5647-53. PubMed ID: 24127754
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Helium focused ion beam fabricated plasmonic antennas with sub-5 nm gaps.
    Scholder O; Jefimovs K; Shorubalko I; Hafner C; Sennhauser U; Bona GL
    Nanotechnology; 2013 Oct; 24(39):395301. PubMed ID: 24013454
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reaching the theoretical resonance quality factor limit in coaxial plasmonic nanoresonators fabricated by helium ion lithography.
    Melli M; Polyakov A; Gargas D; Huynh C; Scipioni L; Bao W; Ogletree DF; Schuck PJ; Cabrini S; Weber-Bargioni A
    Nano Lett; 2013 Jun; 13(6):2687-91. PubMed ID: 23617768
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative study of plasmonic antennas fabricated by electron beam and focused ion beam lithography.
    Horák M; Bukvišová K; Švarc V; Jaskowiec J; Křápek V; Šikola T
    Sci Rep; 2018 Jun; 8(1):9640. PubMed ID: 29941880
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Miniaturized fractal optical nanoantennas defined by focused helium ion beam milling.
    Seitl L; Laible F; Dickreuter S; Gollmer DA; Kern DP; Fleischer M
    Nanotechnology; 2020 Feb; 31(7):075301. PubMed ID: 31725410
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dumbbell gold nanoparticle dimer antennas with advanced optical properties.
    Herrmann JF; Höppener C
    Beilstein J Nanotechnol; 2018; 9():2188-2197. PubMed ID: 30202689
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid Focused Ion Beam Milling Based Fabrication of Plasmonic Nanoparticles and Assemblies via "Sketch and Peel" Strategy.
    Chen Y; Bi K; Wang Q; Zheng M; Liu Q; Han Y; Yang J; Chang S; Zhang G; Duan H
    ACS Nano; 2016 Dec; 10(12):11228-11236. PubMed ID: 28024375
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Linear and nonlinear optical properties of hybrid metallic-dielectric plasmonic nanoantennas.
    Hentschel M; Metzger B; Knabe B; Buse K; Giessen H
    Beilstein J Nanotechnol; 2016; 7():111-20. PubMed ID: 26925359
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonlinear Refractory Plasmonics with Titanium Nitride Nanoantennas.
    Gui L; Bagheri S; Strohfeldt N; Hentschel M; Zgrabik CM; Metzger B; Linnenbank H; Hu EL; Giessen H
    Nano Lett; 2016 Sep; 16(9):5708-13. PubMed ID: 27494639
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of electron dose on positive polymethyl methacrylate resist for nanolithography of gold bowtie nanoantennas.
    Campbell C; Casey A; Triplett G
    Heliyon; 2022 May; 8(5):e09475. PubMed ID: 35663762
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Second harmonic generation spectroscopy on hybrid plasmonic/dielectric nanoantennas.
    Linnenbank H; Grynko Y; Förstner J; Linden S
    Light Sci Appl; 2016 Jan; 5(1):e16013. PubMed ID: 30167115
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metal-dielectric hybrid nanoantennas for efficient frequency conversion at the anapole mode.
    Gili VF; Ghirardini L; Rocco D; Marino G; Favero I; Roland I; Pellegrini G; Duò L; Finazzi M; Carletti L; Locatelli A; Lemaître A; Neshev D; De Angelis C; Leo G; Celebrano M
    Beilstein J Nanotechnol; 2018; 9():2306-2314. PubMed ID: 30202699
    [No Abstract]   [Full Text] [Related]  

  • 14. Probing the Near-Field of Second-Harmonic Light around Plasmonic Nanoantennas.
    Metzger B; Hentschel M; Giessen H
    Nano Lett; 2017 Mar; 17(3):1931-1937. PubMed ID: 28182426
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatially Resolved Nonlinear Plasmonics.
    Schust J; Mangold F; Sterl F; Metz N; Schumacher T; Lippitz M; Hentschel M; Giessen H
    Nano Lett; 2023 Jun; 23(11):5141-5147. PubMed ID: 37222496
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In-Plane Plasmonic Antenna Arrays with Surface Nanogaps for Giant Fluorescence Enhancement.
    Flauraud V; Regmi R; Winkler PM; Alexander DT; Rigneault H; van Hulst NF; García-Parajo MF; Wenger J; Brugger J
    Nano Lett; 2017 Mar; 17(3):1703-1710. PubMed ID: 28182429
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Time-effective strategies for the fabrication of poly- and single-crystalline gold nano-structures by focused helium ion beam milling.
    Laible F; Dreser C; Kern DP; Fleischer M
    Nanotechnology; 2019 Jun; 30(23):235302. PubMed ID: 30907377
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Comparative Study of Gallium-, Xenon-, and Helium-Focused Ion Beams for the Milling of GaN.
    Jiang S; Ortalan V
    Nanomaterials (Basel); 2023 Nov; 13(21):. PubMed ID: 37947742
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Near-field imaging of graphene triangles patterned by helium ion lithography.
    Jiang X; Cai W; Luo W; Xiang Y; Zhang N; Ren M; Zhang X; Xu J
    Nanotechnology; 2018 Sep; 29(38):385205. PubMed ID: 29968574
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Patterning of Complex, Nanometer-Scale Features in Wide-Area Gold Nanoplasmonic Structures Using Helium Focused Ion Beam Milling.
    Semple M; Hryciw AC; Li P; Flaim E; Iyer AK
    ACS Appl Mater Interfaces; 2021 Sep; 13(36):43209-43220. PubMed ID: 34472831
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.