These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 25051478)

  • 1. Lead removal efficiency using biosorbents as alternative materials for permeable reactive barriers.
    Soto-Rios PC; Nakano K; Fujibayashi M; Leon-Romero M; Nishimura O
    Water Sci Technol; 2014; 70(2):307-14. PubMed ID: 25051478
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differences in the removal mechanisms of Undaria pinnatifida and Phragmites australis as biomaterials for lead removal.
    Soto-Rios PC; Nakano K; Leon-Romero M; Aikawa Y; Arai S; Nishimura O
    Water Sci Technol; 2015; 72(7):1226-33. PubMed ID: 26398039
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Treatment of metal-contaminated wastewater: a comparison of low-cost biosorbents.
    Akunwa NK; Muhammad MN; Akunna JC
    J Environ Manage; 2014 Dec; 146():517-523. PubMed ID: 25218332
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Critical review of magnetic biosorbents: Their preparation, application, and regeneration for wastewater treatment.
    Hassan M; Naidu R; Du J; Liu Y; Qi F
    Sci Total Environ; 2020 Feb; 702():134893. PubMed ID: 31733558
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficiency of Phragmites australis and Typha latifolia for heavy metal removal from wastewater.
    Kumari M; Tripathi BD
    Ecotoxicol Environ Saf; 2015 Feb; 112():80-6. PubMed ID: 25463857
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polyacrylamido-2-methyl-1-propane sulfonic acid-grafted-natural rubber as bio-adsorbent for heavy metal removal from aqueous standard solution and industrial wastewater.
    Phetphaisit CW; Yuanyang S; Chaiyasith WC
    J Hazard Mater; 2016 Jan; 301():163-71. PubMed ID: 26348149
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Environmentally friendly biosorbents (husks, pods and seeds) from Moringa oleifera for Pb(II) removal from contaminated water.
    Tavares FO; Pinto LAM; Bassetti FJ; Vieira MF; Bergamasco R; Vieira AMS
    Environ Technol; 2017 Dec; 38(24):3145-3155. PubMed ID: 28145150
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparing the efficiency of Cyperus alternifolius and Phragmites australis in municipal wastewater treatment by subsurface constructed wetland.
    Shahi DH; Eslami H; Ehrampoosh MH; Ebrahimi A; Ghaneian MT; Ayatollah S; Mozayan MR
    Pak J Biol Sci; 2013 Apr; 16(8):379-84. PubMed ID: 24494519
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Copper, lead and zinc removal from metal-contaminated wastewater by adsorption onto agricultural wastes.
    Janyasuthiwong S; Phiri SM; Kijjanapanich P; Rene ER; Esposito G; Lens PN
    Environ Technol; 2015; 36(24):3071-83. PubMed ID: 26001037
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phragmites australis: a novel biosorbent for the removal of heavy metals from aqueous solution.
    Southichak B; Nakano K; Nomura M; Chiba N; Nishimura O
    Water Res; 2006 Jul; 40(12):2295-302. PubMed ID: 16766011
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biosorption of lead(II) from aqueous solutions by non-living algal biomass Oedogonium sp. and Nostoc sp.--a comparative study.
    Gupta VK; Rastogi A
    Colloids Surf B Biointerfaces; 2008 Jul; 64(2):170-8. PubMed ID: 18321684
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Remediation of lead from lead electroplating industrial effluent using sago waste.
    Jeyanthi GP; Shanthi G
    J Environ Sci Eng; 2007 Jan; 49(1):13-6. PubMed ID: 18472553
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differences in adsorption mechanisms of heavy metal by two different plant biomasses: reed and brown seaweed.
    Southichak B; Nakano K; Nomura M; Chiba N; Nishimura O
    Water Sci Technol; 2009; 59(2):339-46. PubMed ID: 19182346
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Removal of pollutants (COD, TSS, and NO
    Saharimoghaddam N; Massoudinejad M; Ghaderpoori M
    Environ Geochem Health; 2019 Jun; 41(3):1433-1444. PubMed ID: 30535545
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of S-ligand tethered cellulose nanofibers for efficient removal of Pb(II) and Cd(II) ions from synthetic and industrial wastewater.
    Abu-Danso E; Peräniemi S; Leiviskä T; Bhatnagar A
    Environ Pollut; 2018 Nov; 242(Pt B):1988-1997. PubMed ID: 30057213
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adsorption of cadmium and lead in wastewater by four kinds of biomass xanthates.
    Li W; Liao X; Wang L; Huang Z
    Water Sci Technol; 2019 Mar; 79(6):1222-1230. PubMed ID: 31070602
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Removal of micro-pollutants from urban wastewater by constructed wetlands with Phragmites australis and Salix matsudana.
    Francini A; Mariotti L; Di Gregorio S; Sebastiani L; Andreucci A
    Environ Sci Pollut Res Int; 2018 Dec; 25(36):36474-36484. PubMed ID: 30374713
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ polymerization of magnetic graphene oxide-diaminopyridine composite for the effective adsorption of Pb(II) and application in battery industry wastewater treatment.
    Wang Z; Wu Q; Zhang J; Zhang H; Feng J; Dong S; Sun J
    Environ Sci Pollut Res Int; 2019 Nov; 26(32):33427-33439. PubMed ID: 31522403
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Agricultural by-products as low-cost sorbents for the removal of heavy metals from dilute wastewaters.
    Humelnicu D; Ignat M; Doroftei F
    Environ Monit Assess; 2015 May; 187(5):222. PubMed ID: 25832011
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly efficient biosorptive removal of lead from industrial effluent.
    Sao K; Pandey M; Pandey PK; Khan F
    Environ Sci Pollut Res Int; 2017 Aug; 24(22):18410-18420. PubMed ID: 28643279
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.