These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 25051646)

  • 21. Supramolecular-Based Ultrasonic-Assisted Dispersion Solidification Liquid-Liquid Microextraction of Copper and Cobalt Prior to Their Flame Atomic Absorption Spectrometry Determination.
    Shokrollahi A; Ebrahimi F
    J AOAC Int; 2017 Nov; 100(6):1861-1868. PubMed ID: 28807089
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Flame atomic absorption determination of trace amounts of cadmium after preconcentration using a thiol-containing task-specific ionic liquid.
    Mohamadi M; Mostafavi A
    J AOAC Int; 2011; 94(3):959-67. PubMed ID: 21797025
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dispersive liquid-liquid microextraction based on solidification of floating organic drop for preconcentration and determination of trace amounts of copper by flame atomic absorption spectrometry.
    Karadaş C; Kara D
    Food Chem; 2017 Apr; 220():242-248. PubMed ID: 27855895
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A novel method for high preconcentration of ultra trace amounts of B₁, B₂, G₁ and G₂ aflatoxins in edible oils by dispersive liquid-liquid microextraction after immunoaffinity column clean-up.
    Afzali D; Ghanbarian M; Mostafavi A; Shamspur T; Ghaseminezhad S
    J Chromatogr A; 2012 Jul; 1247():35-41. PubMed ID: 22673813
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Preconcentration of trace amounts of methadone in human urine, plasma, saliva and sweat samples using dispersive liquid-liquid microextraction followed by high performance liquid chromatography.
    Ranjbari E; Golbabanezhad-Azizi AA; Hadjmohammadi MR
    Talanta; 2012 May; 94():116-22. PubMed ID: 22608423
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Solvent-based de-emulsification dispersive liquid-liquid microextraction of palladium in environmental samples and determination by electrothermal atomic absorption spectrometry.
    Majidi B; Shemirani F
    Talanta; 2012 May; 93():245-51. PubMed ID: 22483906
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Surfactant-Assisted Emulsification and Surfactant-Based Dispersive Liquid-Liquid Microextraction Method for Determination of Cu(II) in Food and Water Samples by Flame Atomic Absorption Spectrometry.
    Bi Şgi N AT
    J AOAC Int; 2019 Sep; 102(5):1516-1522. PubMed ID: 31088596
    [No Abstract]   [Full Text] [Related]  

  • 28. Development of a new green non-dispersive ionic liquid microextraction method in a narrow glass column for determination of cadmium prior to couple with graphite furnace atomic absorption spectrometry.
    Naeemullah ; Kazi TG; Tuzen M; Shah F; Afridi HI; Citak D
    Anal Chim Acta; 2014 Feb; 812():59-64. PubMed ID: 24491765
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In situ metathesis ionic liquid formation dispersive liquid-liquid microextraction for copper determination in water samples by electrothermal atomic absorption spectrometry.
    Stanisz E; Zgoła-Grześkowiak A
    Talanta; 2013 Oct; 115():178-83. PubMed ID: 24054576
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Development of a pH-induced dispersive solid-phase extraction method using folic acid combined with dispersive liquid-liquid microextraction: application in the extraction of Cu(II) and Pb(II) ions from water and fruit juice samples.
    Sorouraddin SM; Parvizzad K; Farajzadeh MA
    Anal Sci; 2023 Jan; 39(1):23-31. PubMed ID: 36227555
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dispersive liquid-liquid microextraction combined with graphite furnace atomic absorption spectrometry: ultra trace determination of cadmium in water samples.
    Zeini Jahromi E; Bidari A; Assadi Y; Milani Hosseini MR; Jamali MR
    Anal Chim Acta; 2007 Mar; 585(2):305-11. PubMed ID: 17386679
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Response surface methodology based on central composite design as a chemometric tool for optimization of dispersive-solidification liquid-liquid microextraction for speciation of inorganic arsenic in environmental water samples.
    Asadollahzadeh M; Tavakoli H; Torab-Mostaedi M; Hosseini G; Hemmati A
    Talanta; 2014 Jun; 123():25-31. PubMed ID: 24725860
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Preconcentration and trace determination of cadmium in spinach and various water samples by temperature-controlled ionic liquid dispersive liquid phase microextraction.
    Rahnama R; Mansoursamaei N; Jamali MR
    Acta Chim Slov; 2014; 61(1):191-6. PubMed ID: 24664344
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Determination of nickel in food samples by flame atomic absorption spectroscopy after preconcentration and microextraction based ionic liquids using full factorial and central composite design.
    Zarei Z; Shemirani F
    J Food Sci; 2012 Dec; 77(12):C1242-8. PubMed ID: 22853633
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Development of dispersive liquid-liquid microextraction based on solidification of floating organic drop for the determination of trace nickel.
    Wang Y; Zhang J; Zhao B; Du X; Ma J; Li J
    Biol Trace Elem Res; 2011 Dec; 144(1-3):1381-93. PubMed ID: 21598026
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A novel task specific magnetic polymeric ionic liquid for selective preconcentration of potassium in oil samples using centrifuge-less dispersive liquid-liquid microextraction technique and its determination by flame atomic emission spectroscopy.
    Beiraghi A; Shokri M
    Talanta; 2018 Feb; 178():616-621. PubMed ID: 29136871
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dispersive liquid-liquid microextraction for the determination of copper in cereals and vegetable food samples using flame atomic absorption spectrometry.
    Shrivas K; Jaiswal NK
    Food Chem; 2013 Dec; 141(3):2263-8. PubMed ID: 23870956
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Magnetic ionic liquid-based dispersive liquid-liquid microextraction technique for preconcentration and ultra-trace determination of Cd in honey.
    Fiorentini EF; Escudero LB; Wuilloud RG
    Anal Bioanal Chem; 2018 Jul; 410(19):4715-4723. PubMed ID: 29675708
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Switchable Solvent-Based Liquid Phase Microextraction Method for the Detection of Cadmium in Water Samples with Flame Atomic Absorption Spectrometry.
    Aydin Urucu O; Aracier ED
    J AOAC Int; 2021 Jun; 104(3):645-649. PubMed ID: 33346836
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An accurate and sensitive analytical strategy for the determination of palladium in aqueous samples: slotted quartz tube flame atomic absorption spectrometry with switchable liquid-liquid microextraction after preconcentration using a Schiff base ligand.
    Fırat M; Bakırdere EG
    Environ Monit Assess; 2019 Feb; 191(3):129. PubMed ID: 30723880
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.