These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 25051931)

  • 1. [Robot-assisted and computer-based neurorehabilitation for children: the story behind].
    Meyer-Heim A; van Hedel HJ
    Praxis (Bern 1994); 2014 Jul; 103(15):883-92. PubMed ID: 25051931
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Robot-assisted and computer-enhanced therapies for children with cerebral palsy: current state and clinical implementation.
    Meyer-Heim A; van Hedel HJ
    Semin Pediatr Neurol; 2013 Jun; 20(2):139-45. PubMed ID: 23948688
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of an interactive upper extremity gestural robotic feedback system: from bench to reality.
    Wood KA; Lathan CE; Kaufman KR
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():5973-6. PubMed ID: 19964144
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Robotic assisted treadmill therapy in children with cerebral palsy].
    Borggräfe I; Meyer-Heim A; Heinen F
    MMW Fortschr Med; 2009 Oct; 151 Suppl 3():123-6. PubMed ID: 20623939
    [No Abstract]   [Full Text] [Related]  

  • 5. Upper extremity rehabilitation of children with cerebral palsy using accelerometer feedback on a multitouch display.
    Dunne A; Do-Lenh S; O' Laighin G; Shen C; Bonato P
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():1751-4. PubMed ID: 21096413
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The New Jersey Institute of Technology Robot-Assisted Virtual Rehabilitation (NJIT-RAVR) system for children with cerebral palsy: a feasibility study.
    Qiu Q; Ramirez DA; Saleh S; Fluet GG; Parikh HD; Kelly D; Adamovich SV
    J Neuroeng Rehabil; 2009 Nov; 6():40. PubMed ID: 19917124
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficacy of robotic rehabilitation of ankle impairments in children with cerebral palsy.
    Wu YN; Ren Y; Hwang M; Gaebler-Spira DJ; Zhang LQ
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():4481-4. PubMed ID: 21095776
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New horizons for robot-assisted therapy in pediatrics.
    Fasoli SE; Ladenheim B; Mast J; Krebs HI
    Am J Phys Med Rehabil; 2012 Nov; 91(11 Suppl 3):S280-9. PubMed ID: 23080043
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Virtual gait training for children with cerebral palsy using the Lokomat gait orthosis.
    Koenig A; Wellner M; Köneke S; Meyer-Heim A; Lünenburger L; Riener R
    Stud Health Technol Inform; 2008; 132():204-9. PubMed ID: 18391287
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Virtual reality aided training of combined arm and leg movements of children with CP.
    Riener R; Dislaki E; Keller U; Koenig A; Van Hedel H; Nagle A
    Stud Health Technol Inform; 2013; 184():349-55. PubMed ID: 23400183
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Practical Recommendations for Robot-Assisted Treadmill Therapy (Lokomat) in Children with Cerebral Palsy: Indications, Goal Setting, and Clinical Implementation within the WHO-ICF Framework.
    Aurich-Schuler T; Warken B; Graser JV; Ulrich T; Borggraefe I; Heinen F; Meyer-Heim A; van Hedel HJ; Schroeder AS
    Neuropediatrics; 2015 Aug; 46(4):248-60. PubMed ID: 26011438
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Virtual reality for enhancement of robot-assisted gait training in children with central gait disorders.
    Brütsch K; Koenig A; Zimmerli L; Mérillat-Koeneke S; Riener R; Jäncke L; van Hedel HJ; Meyer-Heim A
    J Rehabil Med; 2011 May; 43(6):493-9. PubMed ID: 21491072
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Locomotor therapy in neurorehabilitation.
    Hesse S
    NeuroRehabilitation; 2001; 16(3):133-9. PubMed ID: 11790898
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A simple device to assess and train motor coordination.
    Petrofsky JS; Petrofsky D
    J Med Eng Technol; 2004; 28(2):67-73. PubMed ID: 14965860
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Feasibility of gestural feedback treatment for upper extremity movement in children with cerebral palsy.
    Wood KC; Lathan CE; Kaufman KR
    IEEE Trans Neural Syst Rehabil Eng; 2013 Mar; 21(2):300-5. PubMed ID: 23193461
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adaptive model-based assistive control for pneumatic direct driven soft rehabilitation robots.
    Wilkening A; Ivlev O
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650354. PubMed ID: 24187173
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Robot-aided neurorehabilitation: a robot for wrist rehabilitation.
    Krebs HI; Volpe BT; Williams D; Celestino J; Charles SK; Lynch D; Hogan N
    IEEE Trans Neural Syst Rehabil Eng; 2007 Sep; 15(3):327-35. PubMed ID: 17894265
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MIT-Skywalker: A Novel Gait Neurorehabilitation Robot for Stroke and Cerebral Palsy.
    Susko T; Swaminathan K; Krebs HI
    IEEE Trans Neural Syst Rehabil Eng; 2016 Oct; 24(10):1089-1099. PubMed ID: 26929056
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design of a compliantly actuated exo-skeleton for an impedance controlled gait trainer robot.
    van der Kooij H; Veneman J; Ekkelenkamp R
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():189-93. PubMed ID: 17946801
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Virtual environments in brain damage rehabilitation: a rationale from basic neuroscience.
    Rose FD; Attree EA; Brooks BM; Johnson DA
    Stud Health Technol Inform; 1998; 58():233-42. PubMed ID: 10350924
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.