These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 25052337)

  • 41. LCA: a decision support tool for environmental assessment of MSW management systems.
    Liamsanguan C; Gheewala SH
    J Environ Manage; 2008 Apr; 87(1):132-8. PubMed ID: 17350748
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Life-cycle assessment of selected management options for air pollution control residues from waste incineration.
    Fruergaard T; Hyks J; Astrup T
    Sci Total Environ; 2010 Sep; 408(20):4672-80. PubMed ID: 20599249
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Energy and greenhouse gas balances for a solid waste incineration plant: a case study.
    Brinck K; Poulsen TG; Skov H
    Waste Manag Res; 2011 Oct; 29(10 Suppl):13-9. PubMed ID: 21746759
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Evaluation of resource recovery from waste incineration residues--the case of zinc.
    Fellner J; Lederer J; Purgar A; Winterstetter A; Rechberger H; Winter F; Laner D
    Waste Manag; 2015 Mar; 37():95-103. PubMed ID: 25458759
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Life cycle costing of waste management systems: overview, calculation principles and case studies.
    Martinez-Sanchez V; Kromann MA; Astrup TF
    Waste Manag; 2015 Feb; 36():343-55. PubMed ID: 25524749
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A historical perspective of Global Warming Potential from Municipal Solid Waste Management.
    Habib K; Schmidt JH; Christensen P
    Waste Manag; 2013 Sep; 33(9):1926-33. PubMed ID: 23769238
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Environmental performance of construction waste: Comparing three scenarios from a case study in Catalonia, Spain.
    Ortiz O; Pasqualino JC; Castells F
    Waste Manag; 2010 Apr; 30(4):646-54. PubMed ID: 20005694
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Waste-to-energy incineration plants as greenhouse gas reducers: a case study of seven Japanese metropolises.
    Tabata T
    Waste Manag Res; 2013 Nov; 31(11):1110-7. PubMed ID: 24025369
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Alternative strategies for energy recovery from municipal solid waste Part A: Mass and energy balances.
    Consonni S; Giugliano M; Grosso M
    Waste Manag; 2005; 25(2):123-35. PubMed ID: 15737710
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Incineration and co-combustion of waste: accounting of greenhouse gases and global warming contributions.
    Astrup T; Møller J; Fruergaard T
    Waste Manag Res; 2009 Nov; 27(8):789-99. PubMed ID: 19748939
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Environmental assessment of garden waste management in the Municipality of Aarhus, Denmark.
    Boldrin A; Andersen JK; Christensen TH
    Waste Manag; 2011 Jul; 31(7):1560-9. PubMed ID: 21316210
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Food waste-to-energy conversion technologies: current status and future directions.
    Pham TP; Kaushik R; Parshetti GK; Mahmood R; Balasubramanian R
    Waste Manag; 2015 Apr; 38():399-408. PubMed ID: 25555663
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Models for waste life cycle assessment: review of technical assumptions.
    Gentil EC; Damgaard A; Hauschild M; Finnveden G; Eriksson O; Thorneloe S; Kaplan PO; Barlaz M; Muller O; Matsui Y; Ii R; Christensen TH
    Waste Manag; 2010 Dec; 30(12):2636-48. PubMed ID: 20599370
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Energy from Waste--clean, efficient, renewable: transitions in combustion efficiency and NOx control.
    Waldner MH; Halter R; Sigg A; Brosch B; Gehrmann HJ; Keunecke M
    Waste Manag; 2013 Feb; 33(2):317-26. PubMed ID: 23044260
    [TBL] [Abstract][Full Text] [Related]  

  • 55. From waste-to-energy to waste-to-resources: the new role of thermal treatments of solid waste in the Recycling Society.
    Arena U
    Waste Manag; 2015 Mar; 37():1-2. PubMed ID: 25641555
    [No Abstract]   [Full Text] [Related]  

  • 56. Novel and innovative pyrolysis and gasification technologies for energy efficient and environmentally sound MSW disposal.
    Malkow T
    Waste Manag; 2004; 24(1):53-79. PubMed ID: 14672726
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Life cycle assessment of a national policy proposal - the case of a Swedish waste incineration tax.
    Björklund AE; Finnveden G
    Waste Manag; 2007; 27(8):1046-58. PubMed ID: 17419045
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Alternative strategies for energy recovery from municipal solid waste Part B: Emission and cost estimates.
    Consonni S; Giugliano M; Grosso M
    Waste Manag; 2005; 25(2):137-48. PubMed ID: 15737711
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Sustainability assessment of alternative waste-to-energy technologies for the management of sewage sludge.
    Ronda A; Haro P; Gómez-Barea A
    Waste Manag; 2023 Mar; 159():52-62. PubMed ID: 36738586
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Valorisation and emerging perspective of biomass based waste-to-energy technologies and their socio-environmental impact: A review.
    Rasheed T; Anwar MT; Ahmad N; Sher F; Khan SU; Ahmad A; Khan R; Wazeer I
    J Environ Manage; 2021 Jun; 287():112257. PubMed ID: 33690013
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.