These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 25052367)

  • 1. Correction of erroneously packed protein's side chains in the NMR structure based on ab initio chemical shift calculations.
    Zhu T; Zhang JZ; He X
    Phys Chem Chem Phys; 2014 Sep; 16(34):18163-9. PubMed ID: 25052367
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NMR solution structure of the isolated Apo Pin1 WW domain: comparison to the x-ray crystal structures of Pin1.
    Kowalski JA; Liu K; Kelly JW
    Biopolymers; 2002 Feb; 63(2):111-21. PubMed ID: 11786999
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fragment quantum mechanical calculation of proteins and its applications.
    He X; Zhu T; Wang X; Liu J; Zhang JZ
    Acc Chem Res; 2014 Sep; 47(9):2748-57. PubMed ID: 24851673
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein NMR chemical shift calculations based on the automated fragmentation QM/MM approach.
    He X; Wang B; Merz KM
    J Phys Chem B; 2009 Jul; 113(30):10380-8. PubMed ID: 19575540
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural characterisation of PinA WW domain and a comparison with other group IV WW domains, Pin1 and Ess1.
    Ng CA; Kato Y; Tanokura M; Brownlee RT
    Biochim Biophys Acta; 2008 Sep; 1784(9):1208-14. PubMed ID: 18503784
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solution structure of the single-domain prolyl cis/trans isomerase PIN1At from Arabidopsis thaliana.
    Landrieu I; Wieruszeski JM; Wintjens R; Inzé D; Lippens G
    J Mol Biol; 2002 Jul; 320(2):321-32. PubMed ID: 12079389
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of naturally occurring charged mutations on the structure, stability, and binding of the Pin1 WW domain.
    Qiao X; Liu Y; Luo L; Chen L; Zhao C; Ai X
    Biochem Biophys Res Commun; 2017 May; 487(2):470-476. PubMed ID: 28431929
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ten-microsecond molecular dynamics simulation of a fast-folding WW domain.
    Freddolino PL; Liu F; Gruebele M; Schulten K
    Biophys J; 2008 May; 94(10):L75-7. PubMed ID: 18339748
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NMR solution structure of hPar14 reveals similarity to the peptidyl prolyl cis/trans isomerase domain of the mitotic regulator hPin1 but indicates a different functionality of the protein.
    Sekerina E; Rahfeld JU; Müller J; Fanghänel J; Rascher C; Fischer G; Bayer P
    J Mol Biol; 2000 Aug; 301(4):1003-17. PubMed ID: 10966801
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantum calculation of protein NMR chemical shifts based on the automated fragmentation method.
    Zhu T; Zhang JZ; He X
    Adv Exp Med Biol; 2015; 827():49-70. PubMed ID: 25387959
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accelerating the replica exchange method through an efficient all-pairs exchange.
    Brenner P; Sweet CR; VonHandorf D; Izaguirre JA
    J Chem Phys; 2007 Feb; 126(7):074103. PubMed ID: 17328589
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of PIN1 WW domain through a simple statistical mechanics model.
    Bruscolini P; Cecconi F
    Biophys Chem; 2005 Apr; 115(2-3):153-8. PubMed ID: 15752598
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence for small-molecule-mediated loop stabilization in the structure of the isolated Pin1 WW domain.
    Mortenson DE; Kreitler DF; Yun HG; Gellman SH; Forest KT
    Acta Crystallogr D Biol Crystallogr; 2013 Dec; 69(Pt 12):2506-12. PubMed ID: 24311591
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural basis for phosphoserine-proline recognition by group IV WW domains.
    Verdecia MA; Bowman ME; Lu KP; Hunter T; Noel JP
    Nat Struct Biol; 2000 Aug; 7(8):639-43. PubMed ID: 10932246
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Force field bias in protein folding simulations.
    Freddolino PL; Park S; Roux B; Schulten K
    Biophys J; 2009 May; 96(9):3772-80. PubMed ID: 19413983
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Backbone structure confirmation and side chain conformation refinement of a bradykinin mimic BKM-824 by comparing calculated (1)H, (13)C and (19)F chemical shifts with experiment.
    Wang B; Miskolizie M; Kotovych G; Pulay P
    J Biomol Struct Dyn; 2002 Aug; 20(1):71-80. PubMed ID: 12144353
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemical Shifts of the Carbohydrate Binding Domain of Galectin-3 from Magic Angle Spinning NMR and Hybrid Quantum Mechanics/Molecular Mechanics Calculations.
    Kraus J; Gupta R; Yehl J; Lu M; Case DA; Gronenborn AM; Akke M; Polenova T
    J Phys Chem B; 2018 Mar; 122(11):2931-2939. PubMed ID: 29498857
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of hPin1 WW N-terminal domain boundaries on function, protein stability, and folding.
    Jäger M; Nguyen H; Dendle M; Gruebele M; Kelly JW
    Protein Sci; 2007 Jul; 16(7):1495-501. PubMed ID: 17586778
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temperature-dependent folding pathways of Pin1 WW domain: an all-atom molecular dynamics simulation of a Gō model.
    Luo Z; Ding J; Zhou Y
    Biophys J; 2007 Sep; 93(6):2152-61. PubMed ID: 17513360
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fragment density functional theory calculation of NMR chemical shifts for proteins with implicit solvation.
    Zhu T; He X; Zhang JZ
    Phys Chem Chem Phys; 2012 Jun; 14(21):7837-45. PubMed ID: 22314755
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.