BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

543 related articles for article (PubMed ID: 25052369)

  • 1. Understanding the specificity of serpin-protease complexes through interface analysis.
    Rashid Q; Kapil C; Singh P; Kumari V; Jairajpuri MA
    J Biomol Struct Dyn; 2015; 33(6):1352-62. PubMed ID: 25052369
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of the P6-P3' region of the serpin reactive loop in the formation and breakdown of the inhibitory complex.
    Plotnick MI; Schechter NM; Wang ZM; Liu X; Rubin H
    Biochemistry; 1997 Nov; 36(47):14601-8. PubMed ID: 9398179
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The structure of a Michaelis serpin-protease complex.
    Ye S; Cech AL; Belmares R; Bergstrom RC; Tong Y; Corey DR; Kanost MR; Goldsmith EJ
    Nat Struct Biol; 2001 Nov; 8(11):979-83. PubMed ID: 11685246
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling of serpin-protease complexes: antithrombin-thrombin, alpha 1-antitrypsin (358Met-->Arg)-thrombin, alpha 1-antitrypsin (358Met-->Arg)-trypsin, and antitrypsin-elastase.
    Whisstock J; Lesk AM; Carrell R
    Proteins; 1996 Nov; 26(3):288-303. PubMed ID: 8953650
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A unique serpin P1' glutamate and a conserved β-sheet C arginine are key residues for activity, protease recognition and stability of serpinA12 (vaspin).
    Ulbricht D; Pippel J; Schultz S; Meier R; Sträter N; Heiker JT
    Biochem J; 2015 Sep; 470(3):357-67. PubMed ID: 26199422
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural basis for serpin inhibitor activity.
    Wright HT; Scarsdale JN
    Proteins; 1995 Jul; 22(3):210-25. PubMed ID: 7479695
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparative induction and characterization of L-antithrombin: a structural homologue of latent plasminogen activator inhibitor-1.
    Wardell MR; Chang WS; Bruce D; Skinner R; Lesk AM; Carrell RW
    Biochemistry; 1997 Oct; 36(42):13133-42. PubMed ID: 9335576
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure function analysis of serpin super-family: "a computational approach".
    Singh P; Jairajpuri MA
    Protein Pept Lett; 2014; 21(8):714-21. PubMed ID: 23855665
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibitory mechanism of serpins. Identification of steps involving the active-site serine residue of the protease.
    Stone SR; Le Bonniec BF
    J Mol Biol; 1997 Jan; 265(3):344-62. PubMed ID: 9018048
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Methods to measure the kinetics of protease inhibition by serpins.
    Horvath AJ; Lu BG; Pike RN; Bottomley SP
    Methods Enzymol; 2011; 501():223-35. PubMed ID: 22078537
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A serpin-induced extensive proteolytic susceptibility of urokinase-type plasminogen activator implicates distortion of the proteinase substrate-binding pocket and oxyanion hole in the serpin inhibitory mechanism.
    Egelund R; Petersen TE; Andreasen PA
    Eur J Biochem; 2001 Feb; 268(3):673-85. PubMed ID: 11168406
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering an anion-binding cavity in antichymotrypsin modulates the "spring-loaded" serpin-protease interaction.
    Lukacs CM; Rubin H; Christianson DW
    Biochemistry; 1998 Mar; 37(10):3297-304. PubMed ID: 9521649
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein engineering of chimeric Serpins: an investigation into effects of the serpin scaffold and reactive centre loop length.
    Bottomley SP; Stone SR
    Protein Eng; 1998 Dec; 11(12):1243-7. PubMed ID: 9930674
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reactive centre loop dynamics and serpin specificity.
    Marijanovic EM; Fodor J; Riley BT; Porebski BT; Costa MGS; Kass I; Hoke DE; McGowan S; Buckle AM
    Sci Rep; 2019 Mar; 9(1):3870. PubMed ID: 30846766
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An analysis approach to identify specific functional sites in orthologous proteins using sequence and structural information: application to neuroserpin reveals regions that differentially regulate inhibitory activity.
    Lee TW; Yang AS; Brittain T; Birch NP
    Proteins; 2015 Jan; 83(1):135-52. PubMed ID: 25363759
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Serpin-glycosaminoglycan interactions.
    Rein CM; Desai UR; Church FC
    Methods Enzymol; 2011; 501():105-37. PubMed ID: 22078533
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The crystal structure of plasminogen activator inhibitor 2 at 2.0 A resolution: implications for serpin function.
    Harrop SJ; Jankova L; Coles M; Jardine D; Whittaker JS; Gould AR; Meister A; King GC; Mabbutt BC; Curmi PM
    Structure; 1999 Jan; 7(1):43-54. PubMed ID: 10368272
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Serine and cysteine proteases are translocated to similar extents upon formation of covalent complexes with serpins. Fluorescence perturbation and fluorescence resonance energy transfer mapping of the protease binding site in CrmA complexes with granzyme B and caspase-1.
    Swanson R; Raghavendra MP; Zhang W; Froelich C; Gettins PG; Olson ST
    J Biol Chem; 2007 Jan; 282(4):2305-13. PubMed ID: 17142451
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural and functional characterization of cleavage and inactivation of human serine protease inhibitors by the bacterial SPATE protease EspPα from enterohemorrhagic E. coli.
    Weiss A; Joerss H; Brockmeyer J
    PLoS One; 2014; 9(10):e111363. PubMed ID: 25347319
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasminogen activator inhibitor-2 is highly tolerant to P8 residue substitution--implications for serpin mechanistic model and prediction of nsSNP activities.
    Di Giusto DA; Sutherland AP; Jankova L; Harrop SJ; Curmi PM; King GC
    J Mol Biol; 2005 Nov; 353(5):1069-80. PubMed ID: 16214170
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.