BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 2505255)

  • 21. All human tRNATyr genes contain introns as a prerequisite for pseudouridine biosynthesis in the anticodon.
    van Tol H; Beier H
    Nucleic Acids Res; 1988 Mar; 16(5):1951-66. PubMed ID: 3357766
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The primary structure of six leucine isoacceptor tRNAs of yellow lupin seeds. The structural requirements for amber tRNA suppressor activity.
    Barciszewska M; Keith G; Dirheimer G; Mashkova T; Kubli E; Barciszewski J
    Biochim Biophys Acta; 1990 Jan; 1048(1):78-84. PubMed ID: 2297534
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Genetic and molecular analysis of eight tRNA(Trp) amber suppressors in Caenorhabditis elegans.
    Kondo K; Makovec B; Waterston RH; Hodgkin J
    J Mol Biol; 1990 Sep; 215(1):7-19. PubMed ID: 2398498
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pseudouridine in the anticodon G psi A of plant cytoplasmic tRNA(Tyr) is required for UAG and UAA suppression in the TMV-specific context.
    Zerfass K; Beier H
    Nucleic Acids Res; 1992 Nov; 20(22):5911-8. PubMed ID: 1461724
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A nucleotide change in the anticodon of an Escherichia coli serine transfer RNA results in supD-amber suppression.
    Steege DA
    Nucleic Acids Res; 1983 Jun; 11(11):3823-32. PubMed ID: 6344015
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Expression of a set of synthetic suppressor tRNA(Phe) genes in Saccharomyces cerevisiae.
    Masson JM; Meuris P; Grunstein M; Abelson J; Miller JH
    Proc Natl Acad Sci U S A; 1987 Oct; 84(19):6815-9. PubMed ID: 3309948
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Use of supF, an Escherichia coli tyrosine suppressor tRNA gene, as a mutagenic target in shuttle-vector plasmids.
    Kraemer KH; Seidman MM
    Mutat Res; 1989; 220(2-3):61-72. PubMed ID: 2494447
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The discovery of new intron-containing human tRNA genes using the polymerase chain reaction.
    Green CJ; Sohel I; Vold BS
    J Biol Chem; 1990 Jul; 265(21):12139-42. PubMed ID: 2373682
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Drosophila melanogaster tRNA(Ser) suppressor genes function with strict codon specificity when introduced into Saccharomyces cerevisiae.
    Pappu SS; Roy KL; Bell JB
    Gene; 1990 Jul; 91(2):255-9. PubMed ID: 2120115
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Adaptation of an orthogonal archaeal leucyl-tRNA and synthetase pair for four-base, amber, and opal suppression.
    Anderson JC; Schultz PG
    Biochemistry; 2003 Aug; 42(32):9598-608. PubMed ID: 12911301
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Construction of an opal suppressor by oligonucleotide-directed mutagenesis of a Saccharomyces cerevisiae tRNA(Trp) gene.
    Atkin AL; Roy KL; Bell JB
    Mol Cell Biol; 1990 Aug; 10(8):4379-83. PubMed ID: 2370870
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An Escherichia coli tyrosine transfer RNA is a leucine-specific transfer RNA in the yeast Saccharomyces cerevisiae.
    Edwards H; Trézéguet V; Schimmel P
    Proc Natl Acad Sci U S A; 1991 Feb; 88(4):1153-6. PubMed ID: 1996316
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Five glycyl tRNA genes within the noc gene complex of Drosophila melanogaster.
    Meng YB; Stevens RD; Chia W; McGill S; Ashburner M
    Nucleic Acids Res; 1988 Jul; 16(14B):7189. PubMed ID: 3136440
    [No Abstract]   [Full Text] [Related]  

  • 34. Construction, expression, and function of a new yeast amber suppressor, tRNATrpA.
    Kim D; Johnson J
    J Biol Chem; 1988 May; 263(15):7316-21. PubMed ID: 2835371
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Use of RNase P for efficient preparation of yeast tRNATyr transcript and its mutants.
    Fukunaga J; Gouda M; Umeda K; Ohno S; Yokogawa T; Nishikawa K
    J Biochem; 2006 Jan; 139(1):123-7. PubMed ID: 16428327
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In vitro suppression of an amber mutation by a chemically aminoacylated transfer RNA prepared by runoff transcription.
    Noren CJ; Anthony-Cahill SJ; Suich DJ; Noren KA; Griffith MC; Schultz PG
    Nucleic Acids Res; 1990 Jan; 18(1):83-8. PubMed ID: 2308838
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Modulation of the suppression efficiency and amino acid identity of an artificial yeast amber isoleucine transfer RNA in Escherichia coli by a G-U pair in the anticodon stem.
    Büttcher V; Senger B; Schumacher S; Reinbolt J; Fasiolo F
    Biochem Biophys Res Commun; 1994 Apr; 200(1):370-7. PubMed ID: 8166708
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Extensive microheterogeneity of serine tRNA genes from Drosophila melanogaster.
    Cribbs DL; Leung J; Newton CH; Hayashi S; Miller RC; Tener GM
    J Mol Biol; 1987 Oct; 197(3):397-404. PubMed ID: 3126300
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nucleotide sequence of the bean mitochondrial DNA region containing the tRNA(Asn) and tRNA(Tyr) genes.
    Bird S; Duncker B; Garber P; Bonen L
    Nucleic Acids Res; 1989 Jun; 17(11):4379. PubMed ID: 2740226
    [No Abstract]   [Full Text] [Related]  

  • 40. Construction of a composite tRNA gene by anticodon loop transplant.
    Yarus M; McMillan C; Cline S; Bradley D; Snyder M
    Proc Natl Acad Sci U S A; 1980 Sep; 77(9):5092-6. PubMed ID: 6254058
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.