BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

337 related articles for article (PubMed ID: 25052691)

  • 1. Assessment of skeletal muscle proteolysis and the regulatory response to nutrition and exercise.
    Pasiakos SM; Carbone JW
    IUBMB Life; 2014 Jul; 66(7):478-84. PubMed ID: 25052691
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of short-term energy deficit on muscle protein breakdown and intramuscular proteolysis in normal-weight young adults.
    Carbone JW; Pasiakos SM; Vislocky LM; Anderson JM; Rodriguez NR
    Appl Physiol Nutr Metab; 2014 Aug; 39(8):960-8. PubMed ID: 24945715
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of energy deficit, dietary protein, and feeding on intracellular regulators of skeletal muscle proteolysis.
    Carbone JW; Margolis LM; McClung JP; Cao JJ; Murphy NE; Sauter ER; Combs GF; Young AJ; Pasiakos SM
    FASEB J; 2013 Dec; 27(12):5104-11. PubMed ID: 23965841
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aerobic exercise training upregulates skeletal muscle calpain and ubiquitin-proteasome systems in healthy mice.
    Cunha TF; Moreira JB; Paixão NA; Campos JC; Monteiro AW; Bacurau AV; Bueno CR; Ferreira JC; Brum PC
    J Appl Physiol (1985); 2012 Jun; 112(11):1839-46. PubMed ID: 22461440
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimized dietary strategies to protect skeletal muscle mass during periods of unavoidable energy deficit.
    Pasiakos SM; Margolis LM; Orr JS
    FASEB J; 2015 Apr; 29(4):1136-42. PubMed ID: 25550460
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Muscle Protein Turnover and the Molecular Regulation of Muscle Mass during Hypoxia.
    Pasiakos SM; Berryman CE; Carrigan CT; Young AJ; Carbone JW
    Med Sci Sports Exerc; 2017 Jul; 49(7):1340-1350. PubMed ID: 28166119
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cellular signals activating muscle proteolysis in chronic kidney disease: a two-stage process.
    Du J; Hu Z; Mitch WE
    Int J Biochem Cell Biol; 2005 Oct; 37(10):2147-55. PubMed ID: 15982920
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dietary protein, endurance exercise, and human skeletal-muscle protein turnover.
    Rodriguez NR; Vislocky LM; Gaine PC
    Curr Opin Clin Nutr Metab Care; 2007 Jan; 10(1):40-5. PubMed ID: 17143053
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of skeletal muscle proteolysis by amino acids.
    Béchet D; Tassa A; Combaret L; Taillandier D; Attaix D
    J Ren Nutr; 2005 Jan; 15(1):18-22. PubMed ID: 15648001
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Myofibrillar protein turnover: the proteasome and the calpains.
    Goll DE; Neti G; Mares SW; Thompson VF
    J Anim Sci; 2008 Apr; 86(14 Suppl):E19-35. PubMed ID: 17709792
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Skeletal muscle proteolysis in aging.
    Combaret L; Dardevet D; Béchet D; Taillandier D; Mosoni L; Attaix D
    Curr Opin Clin Nutr Metab Care; 2009 Jan; 12(1):37-41. PubMed ID: 19057185
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of ubiquitin-proteasome-dependent proteolysis in the remodelling of skeletal muscle.
    Taillandier D; Combaret L; Pouch MN; Samuels SE; Béchet D; Attaix D
    Proc Nutr Soc; 2004 May; 63(2):357-61. PubMed ID: 15294055
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessing the Role of Muscle Protein Breakdown in Response to Nutrition and Exercise in Humans.
    Tipton KD; Hamilton DL; Gallagher IJ
    Sports Med; 2018 Mar; 48(Suppl 1):53-64. PubMed ID: 29368185
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential regulation of the lysosomal, Ca2+-dependent and ubiquitin/proteasome-dependent proteolytic pathways in fast-twitch and slow-twitch rat muscle following hyperinsulinaemia.
    Larbaud D; Balage M; Taillandier D; Combaret L; Grizard J; Attaix D
    Clin Sci (Lond); 2001 Dec; 101(6):551-8. PubMed ID: 11724638
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of protein and amino acids in promoting lean mass accretion with resistance exercise and attenuating lean mass loss during energy deficit in humans.
    Churchward-Venne TA; Murphy CH; Longland TM; Phillips SM
    Amino Acids; 2013 Aug; 45(2):231-40. PubMed ID: 23645387
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Eat the meat or feed the meat: protein turnover in remodeling muscle.
    Hesselink MK; Minnaard R; Schrauwen P
    Curr Opin Clin Nutr Metab Care; 2006 Nov; 9(6):672-6. PubMed ID: 17053418
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Muscle wasting in a rat model of long-lasting sepsis results from the activation of lysosomal, Ca2+ -activated, and ubiquitin-proteasome proteolytic pathways.
    Voisin L; Breuillé D; Combaret L; Pouyet C; Taillandier D; Aurousseau E; Obled C; Attaix D
    J Clin Invest; 1996 Apr; 97(7):1610-7. PubMed ID: 8601625
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of skeletal muscle energy availability on protein turnover responses to exercise.
    Smiles WJ; Hawley JA; Camera DM
    J Exp Biol; 2016 Jan; 219(Pt 2):214-25. PubMed ID: 26792333
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanisms of skeletal muscle atrophy.
    Ventadour S; Attaix D
    Curr Opin Rheumatol; 2006 Nov; 18(6):631-5. PubMed ID: 17053511
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Invited review: Muscle protein breakdown and its assessment in periparturient dairy cows.
    Sadri H; Ghaffari MH; Sauerwein H
    J Dairy Sci; 2023 Feb; 106(2):822-842. PubMed ID: 36460512
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.