BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 25052736)

  • 1. Physical and mechanical characterisation of 3D-printed porous titanium for biomedical applications.
    El-Hajje A; Kolos EC; Wang JK; Maleksaeedi S; He Z; Wiria FE; Choong C; Ruys AJ
    J Mater Sci Mater Med; 2014 Nov; 25(11):2471-80. PubMed ID: 25052736
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Studies on personalized porous titanium implant fabricated using three-dimensional printing forming technique].
    Xiong Y; Chen P; Sun J
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2012 Apr; 29(2):247-50. PubMed ID: 22616167
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication of porous titanium implants by three-dimensional printing and sintering at different temperatures.
    Xiong Y; Qian C; Sun J
    Dent Mater J; 2012; 31(5):815-20. PubMed ID: 23037845
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bionic mechanical design and 3D printing of novel porous Ti6Al4V implants for biomedical applications.
    Peng WM; Liu YF; Jiang XF; Dong XT; Jun J; Baur DA; Xu JJ; Pan H; Xu X
    J Zhejiang Univ Sci B; 2019 Aug.; 20(8):647-659. PubMed ID: 31273962
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formability and mechanical properties of porous titanium produced by a moldless process.
    Naito Y; Bae J; Tomotake Y; Hamada K; Asaoka K; Ichikawa T
    J Biomed Mater Res B Appl Biomater; 2013 Aug; 101(6):1090-4. PubMed ID: 23559484
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flexural and compressive mechanical behaviors of the porous titanium materials with entangled wire structure at different sintering conditions for load-bearing biomedical applications.
    He G; Liu P; Tan Q; Jiang G
    J Mech Behav Biomed Mater; 2013 Dec; 28():309-19. PubMed ID: 24021173
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of Ti + Mg composites by three-dimensional printing of porous Ti and subsequent pressureless infiltration of biodegradable Mg.
    Meenashisundaram GK; Wang N; Maskomani S; Lu S; Anantharajan SK; Dheen ST; Nai SML; Fuh JYH; Wei J
    Mater Sci Eng C Mater Biol Appl; 2020 Mar; 108():110478. PubMed ID: 31923949
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioactive macroporous titanium implants highly interconnected.
    Caparrós C; Ortiz-Hernandez M; Molmeneu M; Punset M; Calero JA; Aparicio C; Fernández-Fairén M; Perez R; Gil FJ
    J Mater Sci Mater Med; 2016 Oct; 27(10):151. PubMed ID: 27582071
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Porous material based on spongy titanium granules: structure, mechanical properties, and osseointegration.
    Rubshtein AP; Trakhtenberg ISh; Makarova EB; Triphonova EB; Bliznets DG; Yakovenkova LI; Vladimirov AB
    Mater Sci Eng C Mater Biol Appl; 2014 Feb; 35():363-9. PubMed ID: 24411389
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanical behavior of a titanium alloy scaffold mimicking trabecular structure.
    Zhang C; Zhang L; Liu L; Lv L; Gao L; Liu N; Wang X; Ye J
    J Orthop Surg Res; 2020 Feb; 15(1):40. PubMed ID: 32028970
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation, microstructure and mechanical properties of porous titanium sintered by Ti fibres.
    Zou C; Zhang E; Li M; Zeng S
    J Mater Sci Mater Med; 2008 Jan; 19(1):401-5. PubMed ID: 17607525
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of the compressive behaviour of the three-dimensional printed porous titanium for dental implants using a modified cellular solid model.
    Gagg G; Ghassemieh E; Wiria FE
    Proc Inst Mech Eng H; 2013 Sep; 227(9):1020-6. PubMed ID: 23804952
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Porous titanium materials with entangled wire structure for load-bearing biomedical applications.
    He G; Liu P; Tan Q
    J Mech Behav Biomed Mater; 2012 Jan; 5(1):16-31. PubMed ID: 22100076
    [TBL] [Abstract][Full Text] [Related]  

  • 14.
    Fu J; Xiang Y; Ni M; Qu X; Zhou Y; Hao L; Zhang G; Chen J
    Biomed Res Int; 2020; 2020():4542302. PubMed ID: 33335923
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cancellous bone from porous Ti6Al4V by multiple coating technique.
    Li JP; Li SH; Van Blitterswijk CA; de Groot K
    J Mater Sci Mater Med; 2006 Feb; 17(2):179-85. PubMed ID: 16502251
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of sintering temperature on morphology and mechanical characteristics of 3D printed porous titanium used as dental implant.
    Gagg G; Ghassemieh E; Wiria FE
    Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):3858-64. PubMed ID: 23910288
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanical properties tailoring of topology optimized and selective laser melting fabricated Ti6Al4V lattice structure.
    Xu Y; Zhang D; Hu S; Chen R; Gu Y; Kong X; Tao J; Jiang Y
    J Mech Behav Biomed Mater; 2019 Nov; 99():225-239. PubMed ID: 31400657
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microstructure and compression properties of 3D powder printed Ti-6Al-4V scaffolds with designed porosity: Experimental and computational analysis.
    Barui S; Chatterjee S; Mandal S; Kumar A; Basu B
    Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 1):812-823. PubMed ID: 27770959
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication, pore structure and compressive behavior of anisotropic porous titanium for human trabecular bone implant applications.
    Li F; Li J; Xu G; Liu G; Kou H; Zhou L
    J Mech Behav Biomed Mater; 2015 Jun; 46():104-14. PubMed ID: 25778351
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of biomedical porous titanium filled with medical polymer by in-situ polymerization of monomer solution infiltrated into pores.
    Nakai M; Niinomi M; Akahori T; Tsutsumi H; Itsuno S; Haraguchi N; Itoh Y; Ogasawara T; Onishi T; Shindoh T
    J Mech Behav Biomed Mater; 2010 Jan; 3(1):41-50. PubMed ID: 19878901
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.