BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 25052778)

  • 21. Cycloadditions of Trans-Cyclooctenes and Nitrones as Tools for Bioorthogonal Labelling.
    Margison KD; Bilodeau DA; Mahmoudi F; Pezacki JP
    Chembiochem; 2020 Apr; 21(7):948-951. PubMed ID: 31617669
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Tetrazine-trans-cyclooctene ligation for the rapid construction of integrin αvβ₃ targeted PET tracer based on a cyclic RGD peptide.
    Selvaraj R; Liu S; Hassink M; Huang CW; Yap LP; Park R; Fox JM; Li Z; Conti PS
    Bioorg Med Chem Lett; 2011 Sep; 21(17):5011-4. PubMed ID: 21601452
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Site-specific immobilization of biotinylated proteins for protein microarray analysis.
    Lue RY; Chen GY; Zhu Q; Lesaicherre ML; Yao SQ
    Methods Mol Biol; 2004; 264():85-100. PubMed ID: 15020782
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Site-specific fluorescence labelling of RNA using bio-orthogonal reaction of trans-cyclooctene and tetrazine.
    Asare-Okai PN; Agustin E; Fabris D; Royzen M
    Chem Commun (Camb); 2014 Jul; 50(58):7844-7. PubMed ID: 24909672
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Highly reactive trans-cyclooctene tags with improved stability for Diels-Alder chemistry in living systems.
    Rossin R; van den Bosch SM; Ten Hoeve W; Carvelli M; Versteegen RM; Lub J; Robillard MS
    Bioconjug Chem; 2013 Jul; 24(7):1210-7. PubMed ID: 23725393
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biosynthetic approach for functional protein microarrays.
    Stamos B; Loredo L; Chand S; Phan TV; Zhang Y; Mohapatra S; Rajeshwar K; Perera R
    Anal Biochem; 2012 May; 424(2):114-23. PubMed ID: 22370272
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Spatially controlled surface immobilization of nonmodified peptides.
    Pauloehrl T; Welle A; Bruns M; Linkert K; Börner HG; Bastmeyer M; Delaittre G; Barner-Kowollik C
    Angew Chem Int Ed Engl; 2013 Sep; 52(37):9714-8. PubMed ID: 23893777
    [No Abstract]   [Full Text] [Related]  

  • 28. Microfluidic on-chip capture-cycloaddition reaction to reversibly immobilize small molecules or multi-component structures for biosensor applications.
    Tassa C; Liong M; Hilderbrand S; Sandler JE; Reiner T; Keliher EJ; Weissleder R; Shaw SY
    J Vis Exp; 2013 Sep; (79):e50772. PubMed ID: 24084440
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Azide and trans-cyclooctene dUTPs: incorporation into DNA probes and fluorescent click-labelling.
    Ren X; El-Sagheer AH; Brown T
    Analyst; 2015 Apr; 140(8):2671-8. PubMed ID: 25734317
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Site-specific peptide and protein immobilization on surface plasmon resonance chips via strain-promoted cycloaddition.
    Wammes AE; Fischer MJ; de Mol NJ; van Eldijk MB; Rutjes FP; van Hest JC; van Delft FL
    Lab Chip; 2013 May; 13(10):1863-7. PubMed ID: 23552823
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Preparation of small-molecule microarrays by trans-cyclooctene tetrazine ligation and their application in the high-throughput screening of protein-protein interaction inhibitors of bromodomains.
    Zhang CJ; Tan CY; Ge J; Na Z; Chen GY; Uttamchandani M; Sun H; Yao SQ
    Angew Chem Int Ed Engl; 2013 Dec; 52(52):14060-4. PubMed ID: 24353229
    [No Abstract]   [Full Text] [Related]  

  • 32. Site-specific peptide immobilization strategies for the rapid detection of kinase activity on microarrays.
    Uttamchandani M; Chen GY; Lesaicherre ML; Yao SQ
    Methods Mol Biol; 2004; 264():191-204. PubMed ID: 15020791
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High Affinity Immobilization of Proteins Using the CrAsH/TC Tag.
    Schulte-Zweckel J; Rosi F; Sreenu D; Schröder H; Niemeyer CM; Triola G
    Molecules; 2016 Jun; 21(6):. PubMed ID: 27338319
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fabrication of a protein microarray by fluorous-fluorous interactions.
    Li BY; Juang DS; Adak AK; Hwang KC; Lin CC
    Sci Rep; 2017 Aug; 7(1):7053. PubMed ID: 28765646
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Polymer-binding peptides for the noncovalent modification of polymer surfaces: effects of peptide density on the subsequent immobilization of functional proteins.
    Date T; Sekine J; Matsuno H; Serizawa T
    ACS Appl Mater Interfaces; 2011 Feb; 3(2):351-9. PubMed ID: 21288050
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Self-assembled peptide nanoarrays: an approach to studying protein-protein interactions.
    Williams BA; Lund K; Liu Y; Yan H; Chaput JC
    Angew Chem Int Ed Engl; 2007; 46(17):3051-4. PubMed ID: 17361972
    [No Abstract]   [Full Text] [Related]  

  • 37. Straightforward protein immobilization using redox-initiated poly(methyl methacrylate) polymerization.
    Heyries KA; Blum LJ; Marquette CA
    Langmuir; 2009 Jan; 25(2):661-4. PubMed ID: 19105717
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Development of the First Tritiated Tetrazine: Facilitating Tritiation of Proteins.
    Radjani Bidesi NS; Battisti UM; Lopes van de Broek S; Shalgunov V; Dall AM; Bøggild Kristensen J; Sehlin D; Syvänen S; Moos Knudsen G; Herth MM
    Chembiochem; 2022 Dec; 23(23):e202200539. PubMed ID: 36333105
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Chemoselective protein and peptide immobilization on biosensor surfaces.
    Lempens EH; Helms BA; Merkx M
    Methods Mol Biol; 2011; 751():401-20. PubMed ID: 21674345
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Influence of material properties upon immobilization of histidine-tagged protein on Ni-Co coated chip.
    Chang YJ; Ho CY; Chang CH
    Mater Sci Eng C Mater Biol Appl; 2014 Apr; 37():369-73. PubMed ID: 24582262
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.