These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 25052837)

  • 1. Bone mechanobiology, gravity and tissue engineering: effects and insights.
    Ruggiu A; Cancedda R
    J Tissue Eng Regen Med; 2015 Dec; 9(12):1339-51. PubMed ID: 25052837
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tissue Engineering Under Microgravity Conditions-Use of Stem Cells and Specialized Cells.
    Grimm D; Egli M; Krüger M; Riwaldt S; Corydon TJ; Kopp S; Wehland M; Wise P; Infanger M; Mann V; Sundaresan A
    Stem Cells Dev; 2018 Jun; 27(12):787-804. PubMed ID: 29596037
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physiological effects of microgravity on bone cells.
    Arfat Y; Xiao WZ; Iftikhar S; Zhao F; Li DJ; Sun YL; Zhang G; Shang P; Qian AR
    Calcif Tissue Int; 2014 Jun; 94(6):569-79. PubMed ID: 24687524
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of microgravity on bone and calcium homeostasis.
    Zerath E
    Adv Space Res; 1998; 21(8-9):1049-58. PubMed ID: 11541350
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microgravity and bone cell mechanosensitivity.
    Klein-Nulend J; Bacabac RG; Veldhuijzen JP; Van Loon JJ
    Adv Space Res; 2003; 32(8):1551-9. PubMed ID: 15000126
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct compression as an appropriately mechanical environment in bone tissue reconstruction in vitro.
    Chunqiu Z; Xizheng Z; Han W; Daqing H; Jing G
    Med Hypotheses; 2006; 67(6):1414-8. PubMed ID: 16846697
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The impact of simulated and real microgravity on bone cells and mesenchymal stem cells.
    Ulbrich C; Wehland M; Pietsch J; Aleshcheva G; Wise P; van Loon J; Magnusson N; Infanger M; Grosse J; Eilles C; Sundaresan A; Grimm D
    Biomed Res Int; 2014; 2014():928507. PubMed ID: 25110709
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using dihydropyridine-release strategies to enhance load effects in engineered human bone constructs.
    Wood MA; Yang Y; Thomas PB; Haj AJ
    Tissue Eng; 2006 Sep; 12(9):2489-97. PubMed ID: 16995782
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [A new loading bioreactor for bone tissue-engineering applications].
    Zhang C; Zhang X; Wang F; Wu J; Wang Y; Lu Q
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2005 Aug; 22(4):804-8, 832. PubMed ID: 16156278
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bone mechanobiology in mice: toward single-cell in vivo mechanomics.
    Scheuren A; Wehrle E; Flohr F; Müller R
    Biomech Model Mechanobiol; 2017 Dec; 16(6):2017-2034. PubMed ID: 28735414
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neocartilage formation in 1 g, simulated, and microgravity environments: implications for tissue engineering.
    Stamenković V; Keller G; Nesic D; Cogoli A; Grogan SP
    Tissue Eng Part A; 2010 May; 16(5):1729-36. PubMed ID: 20141387
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lipocalin 2: a new mechanoresponding gene regulating bone homeostasis.
    Rucci N; Capulli M; Piperni SG; Cappariello A; Lau P; Frings-Meuthen P; Heer M; Teti A
    J Bone Miner Res; 2015 Feb; 30(2):357-68. PubMed ID: 25112732
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strategies of Manipulating BMP Signaling in Microgravity to Prevent Bone Loss.
    Siamwala JH; Rajendran S; Chatterjee S
    Vitam Horm; 2015; 99():249-72. PubMed ID: 26279379
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The use of murine embryonic stem cells, alginate encapsulation, and rotary microgravity bioreactor in bone tissue engineering.
    Hwang YS; Cho J; Tay F; Heng JY; Ho R; Kazarian SG; Williams DR; Boccaccini AR; Polak JM; Mantalaris A
    Biomaterials; 2009 Feb; 30(4):499-507. PubMed ID: 18977027
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Systems specificity in responsiveness to intermittent artificial gravity during simulated microgravity in rats.
    Zhang LF; Zhang S
    Sheng Li Xue Bao; 2016 Aug; 68(4):391-402. PubMed ID: 27546500
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The current state of bone loss research: data from spaceflight and microgravity simulators.
    Nagaraja MP; Risin D
    J Cell Biochem; 2013 May; 114(5):1001-8. PubMed ID: 23150462
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomanufacturing of 3D Tissue Constructs in Microgravity and their Applications in Human Pathophysiological Studies.
    Ren Z; Harriot AD; Mair DB; Chung MK; Lee PHU; Kim DH
    Adv Healthc Mater; 2023 Sep; 12(23):e2300157. PubMed ID: 37483106
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microgravity Stress: Bone and Connective Tissue.
    Bloomfield SA; Martinez DA; Boudreaux RD; Mantri AV
    Compr Physiol; 2016 Mar; 6(2):645-86. PubMed ID: 27065165
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bone cell survival in microgravity: evidence that modeled microgravity increases osteoblast sensitivity to apoptogens.
    Bucaro MA; Fertala J; Adams CS; Steinbeck M; Ayyaswamy P; Mukundakrishnan K; Shapiro IM; Risbud MV
    Ann N Y Acad Sci; 2004 Nov; 1027():64-73. PubMed ID: 15644346
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Parathyroid hormone-related protein is a gravisensor in lung and bone cell biology.
    Torday JS
    Adv Space Res; 2003; 32(8):1569-76. PubMed ID: 15000128
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.