These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 25053115)

  • 1. The effects of time, temperature, and pH on the stability of PDU bacterial microcompartments.
    Kim EY; Slininger MF; Tullman-Ercek D
    Protein Sci; 2014 Oct; 23(10):1434-41. PubMed ID: 25053115
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Linking the Salmonella enterica 1,2-Propanediol Utilization Bacterial Microcompartment Shell to the Enzymatic Core via the Shell Protein PduB.
    Kennedy NW; Mills CE; Abrahamson CH; Archer AG; Shirman S; Jewett MC; Mangan NM; Tullman-Ercek D
    J Bacteriol; 2022 Sep; 204(9):e0057621. PubMed ID: 35575582
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In Salmonella enterica, Ethanolamine Utilization Is Repressed by 1,2-Propanediol To Prevent Detrimental Mixing of Components of Two Different Bacterial Microcompartments.
    Sturms R; Streauslin NA; Cheng S; Bobik TA
    J Bacteriol; 2015 Jul; 197(14):2412-21. PubMed ID: 25962913
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Localization of proteins to the 1,2-propanediol utilization microcompartment by non-native signal sequences is mediated by a common hydrophobic motif.
    Jakobson CM; Kim EY; Slininger MF; Chien A; Tullman-Ercek D
    J Biol Chem; 2015 Oct; 290(40):24519-33. PubMed ID: 26283792
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The PduM protein is a structural component of the microcompartments involved in coenzyme B(12)-dependent 1,2-propanediol degradation by Salmonella enterica.
    Sinha S; Cheng S; Fan C; Bobik TA
    J Bacteriol; 2012 Apr; 194(8):1912-8. PubMed ID: 22343294
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The N Terminus of the PduB Protein Binds the Protein Shell of the Pdu Microcompartment to Its Enzymatic Core.
    Lehman BP; Chowdhury C; Bobik TA
    J Bacteriol; 2017 Apr; 199(8):. PubMed ID: 28138097
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering transcriptional regulation to control Pdu microcompartment formation.
    Kim EY; Jakobson CM; Tullman-Ercek D
    PLoS One; 2014; 9(11):e113814. PubMed ID: 25427074
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cargo encapsulation in bacterial microcompartments: Methods and analysis.
    Nichols TM; Kennedy NW; Tullman-Ercek D
    Methods Enzymol; 2019; 617():155-186. PubMed ID: 30784401
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural insight into the mechanisms of transport across the Salmonella enterica Pdu microcompartment shell.
    Crowley CS; Cascio D; Sawaya MR; Kopstein JS; Bobik TA; Yeates TO
    J Biol Chem; 2010 Nov; 285(48):37838-46. PubMed ID: 20870711
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Decoding the stoichiometric composition and organisation of bacterial metabolosomes.
    Yang M; Simpson DM; Wenner N; Brownridge P; Harman VM; Hinton JCD; Beynon RJ; Liu LN
    Nat Commun; 2020 Apr; 11(1):1976. PubMed ID: 32332738
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic analysis of the protein shell of the microcompartments involved in coenzyme B12-dependent 1,2-propanediol degradation by Salmonella.
    Cheng S; Sinha S; Fan C; Liu Y; Bobik TA
    J Bacteriol; 2011 Mar; 193(6):1385-92. PubMed ID: 21239588
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure and expression of propanediol utilization microcompartments in Acetonema longum.
    Tocheva EI; Matson EG; Cheng SN; Chen WG; Leadbetter JR; Jensen GJ
    J Bacteriol; 2014 May; 196(9):1651-8. PubMed ID: 24532773
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic Characterization of a Glycyl Radical Microcompartment Used for 1,2-Propanediol Fermentation by Uropathogenic Escherichia coli CFT073.
    Lundin AP; Stewart KL; Stewart AM; Herring TI; Chowdhury C; Bobik TA
    J Bacteriol; 2020 Apr; 202(9):. PubMed ID: 32071097
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anaerobic Growth of
    Zeng Z; Li S; Boeren S; Smid EJ; Notebaart RA; Abee T
    mSphere; 2021 Aug; 6(4):e0043421. PubMed ID: 34287006
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prokaryotic Organelles: Bacterial Microcompartments in
    Stewart KL; Stewart AM; Bobik TA
    EcoSal Plus; 2020 Oct; 9(1):. PubMed ID: 33030141
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interactions between the termini of lumen enzymes and shell proteins mediate enzyme encapsulation into bacterial microcompartments.
    Fan C; Cheng S; Sinha S; Bobik TA
    Proc Natl Acad Sci U S A; 2012 Sep; 109(37):14995-5000. PubMed ID: 22927404
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering the PduT shell protein to modify the permeability of the 1,2-propanediol microcompartment of
    Chowdhury C; Bobik TA
    Microbiology (Reading); 2019 Dec; 165(12):1355-1364. PubMed ID: 31674899
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The function of the PduJ microcompartment shell protein is determined by the genomic position of its encoding gene.
    Chowdhury C; Chun S; Sawaya MR; Yeates TO; Bobik TA
    Mol Microbiol; 2016 Sep; 101(5):770-83. PubMed ID: 27561553
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transfer and analysis of Salmonella pdu genes in a range of Gram-negative bacteria demonstrate exogenous microcompartment expression across a variety of species.
    Graf L; Wu K; Wilson JW
    Microb Biotechnol; 2018 Jan; 11(1):199-210. PubMed ID: 28967207
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A rapid flow cytometry assay for the relative quantification of protein encapsulation into bacterial microcompartments.
    Kim EY; Tullman-Ercek D
    Biotechnol J; 2014 Mar; 9(3):348-54. PubMed ID: 24323373
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.