BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

441 related articles for article (PubMed ID: 25053329)

  • 1. Dissociative adsorption of CO2 on flat, stepped, and kinked Cu surfaces.
    Muttaqien F; Hamamoto Y; Inagaki K; Morikawa Y
    J Chem Phys; 2014 Jul; 141(3):034702. PubMed ID: 25053329
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CO
    Muttaqien F; Hamamoto Y; Hamada I; Inagaki K; Shiozawa Y; Mukai K; Koitaya T; Yoshimoto S; Yoshinobu J; Morikawa Y
    J Chem Phys; 2017 Sep; 147(9):094702. PubMed ID: 28886627
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of van der Waals interaction in forming molecule-metal junctions: flat organic molecules on the Au(111) surface.
    Mura M; Gulans A; Thonhauser T; Kantorovich L
    Phys Chem Chem Phys; 2010 May; 12(18):4759-67. PubMed ID: 20428556
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The roles of surface structure, oxygen defects, and hydration in the adsorption of CO(2) on low-index ZnGa(2)O(4) surfaces: a first-principles investigation.
    Jia C; Fan W; Cheng X; Zhao X; Sun H; Li P; Lin N
    Phys Chem Chem Phys; 2014 Apr; 16(16):7538-47. PubMed ID: 24632683
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interface characteristics at an organic/metal junction: pentacene on Cu stepped surfaces.
    Matos J; Kara A
    J Phys Condens Matter; 2016 Nov; 28(44):445001. PubMed ID: 27604645
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of steps in the dissociation of H(2) on Mg(0001).
    Pozzo M; Alfè D
    J Phys Condens Matter; 2009 Mar; 21(9):095004. PubMed ID: 21817377
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CO
    Kwawu CR; Tia R; Adei E; Dzade NY; Catlow CRA; de Leeuw NH
    Phys Chem Chem Phys; 2017 Jul; 19(29):19478-19486. PubMed ID: 28718470
    [TBL] [Abstract][Full Text] [Related]  

  • 8. O2 evolution on a clean partially reduced rutile TiO2(110) surface and on the same surface precovered with Au1 and Au2: the importance of spin conservation.
    Chrétien S; Metiu H
    J Chem Phys; 2008 Aug; 129(7):074705. PubMed ID: 19044790
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adsorption and activation of CO over flat and stepped Co surfaces: a first principles analysis.
    Ge Q; Neurock M
    J Phys Chem B; 2006 Aug; 110(31):15368-80. PubMed ID: 16884257
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Density functional theory calculations of the hydrazine decomposition mechanism on the planar and stepped Cu(111) surfaces.
    Tafreshi SS; Roldan A; de Leeuw NH
    Phys Chem Chem Phys; 2015 Sep; 17(33):21533-46. PubMed ID: 26219750
    [TBL] [Abstract][Full Text] [Related]  

  • 11. General rules for predicting where a catalytic reaction should occur on metal surfaces: a density functional theory study of C-H and C-O bond breaking/making on flat, stepped, and kinked metal surfaces.
    Liu ZP; Hu P
    J Am Chem Soc; 2003 Feb; 125(7):1958-67. PubMed ID: 12580623
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of van der Waals interactions in the adsorption of noble gases on metal surfaces.
    Chen DL; Al-Saidi WA; Johnson JK
    J Phys Condens Matter; 2012 Oct; 24(42):424211. PubMed ID: 23032730
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The different roles of Pu-oxide overlayers in the hydrogenation of Pu-metal: an ab initio molecular dynamics study based on van der Waals density functional (vdW-DF)+U.
    Sun B; Liu H; Song H; Zhang G; Zheng H; Zhao XG; Zhang P
    J Chem Phys; 2014 Apr; 140(16):164709. PubMed ID: 24784301
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adsorption of CO2 and coadsorption of H and CO2 on potassium-promoted Cu(115).
    Onsgaard J; Hoffmann SV; Møller P; Godowski PJ; Wagner JB; Paolucci G; Baraldi A; Comelli G; Groso A
    Chemphyschem; 2003 Apr; 4(5):466-73. PubMed ID: 12785260
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction of CO, O, and CO
    Padama AAB; Ocon JD; Nakanishi H; Kasai H
    J Phys Condens Matter; 2019 Oct; 31(41):415201. PubMed ID: 31220815
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of van der Waals functionals to the calculation of dissociative adsorption of N2 on W(110) for static and dynamic systems.
    Migliorini D; Nattino F; Kroes GJ
    J Chem Phys; 2016 Feb; 144(8):084702. PubMed ID: 26931713
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of the van der Waals interactions in the adsorption of anthracene and pentacene on the Ag(111) surface.
    Morbec JM; Kratzer P
    J Chem Phys; 2017 Jan; 146(3):034702. PubMed ID: 28109219
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theoretical understanding of the properties of stepped iron surfaces with van der Waals interaction corrections.
    White JJ; Liu J; Hinsch JJ; Wang Y
    Phys Chem Chem Phys; 2021 Feb; 23(4):2649-2657. PubMed ID: 33480923
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adsorption and protonation of CO2 on partially hydroxylated gamma-Al2O3 surfaces: a density functional theory study.
    Pan Y; Liu CJ; Ge Q
    Langmuir; 2008 Nov; 24(21):12410-9. PubMed ID: 18834159
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Density functional study of the adsorption and van der Waals binding of aromatic and conjugated compounds on the basal plane of MoS(2).
    Moses PG; Mortensen JJ; Lundqvist BI; Norskov JK
    J Chem Phys; 2009 Mar; 130(10):104709. PubMed ID: 19292551
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.