BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 25054655)

  • 1. Biodegradable material for the absorption of organic compounds and nanoparticles.
    Ortega FJ; Ventre M; Netti PA
    Biomacromolecules; 2014 Sep; 15(9):3321-7. PubMed ID: 25054655
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antifouling Cellulose Hybrid Biomembrane for Effective Oil/Water Separation.
    Kollarigowda RH; Abraham S; Montemagno CD
    ACS Appl Mater Interfaces; 2017 Sep; 9(35):29812-29819. PubMed ID: 28796485
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Robust superhydrophobic/superoleophilic sponge for effective continuous absorption and expulsion of oil pollutants from water.
    Wang CF; Lin SJ
    ACS Appl Mater Interfaces; 2013 Sep; 5(18):8861-4. PubMed ID: 24032484
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Removal of organic compounds from water by using a gold nanoparticle-poly(dimethylsiloxane) nanocomposite foam.
    Gupta R; Kulkarni GU
    ChemSusChem; 2011 Jun; 4(6):737-43. PubMed ID: 21567977
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptable bioinspired special wetting surface for multifunctional oil/water separation.
    Kavalenka MN; Vüllers F; Kumberg J; Zeiger C; Trouillet V; Stein S; Ava TT; Li C; Worgull M; Hölscher H
    Sci Rep; 2017 Jan; 7():39970. PubMed ID: 28051163
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potential of zerovalent iron nanoparticles for remediation of environmental organic contaminants in water: a review.
    Raychoudhury T; Scheytt T
    Water Sci Technol; 2013; 68(7):1425-39. PubMed ID: 24135090
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A biomimetic absorbent for removal of trace level persistent organic pollutants from water.
    Liu H; Qu J; Dai R; Ru J; Wang Z
    Environ Pollut; 2007 May; 147(2):337-42. PubMed ID: 16930794
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-performance, superparamagnetic, nanoparticle-based heavy metal sorbents for removal of contaminants from natural waters.
    Warner CL; Addleman RS; Cinson AD; Droubay TC; Engelhard MH; Nash MA; Yantasee W; Warner MG
    ChemSusChem; 2010 Jun; 3(6):749-57. PubMed ID: 20468024
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Magnetically driven floating foams for the removal of oil contaminants from water.
    Calcagnile P; Fragouli D; Bayer IS; Anyfantis GC; Martiradonna L; Cozzoli PD; Cingolani R; Athanassiou A
    ACS Nano; 2012 Jun; 6(6):5413-9. PubMed ID: 22577733
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photocatalytic degradation of agricultural N-heterocyclic organic pollutants using immobilized nanoparticles of titania.
    Mahmoodi NM; Arami M; Limaee NY; Gharanjig K
    J Hazard Mater; 2007 Jun; 145(1-2):65-71. PubMed ID: 17145132
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of natural organic matter on cerium dioxide nanoparticles settling in model fresh water.
    Quik JT; Lynch I; Van Hoecke K; Miermans CJ; De Schamphelaere KA; Janssen CR; Dawson KA; Stuart MA; Van De Meent D
    Chemosphere; 2010 Oct; 81(6):711-5. PubMed ID: 20728203
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Absorption of a mixture of volatile organic compounds (VOCs) in aqueous solutions of soluble cutting oil.
    Lalanne F; Malhautier L; Roux JC; Fanlo JL
    Bioresour Technol; 2008 Apr; 99(6):1699-707. PubMed ID: 17513105
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Manganese doping of magnetic iron oxide nanoparticles: tailoring surface reactivity for a regenerable heavy metal sorbent.
    Warner CL; Chouyyok W; Mackie KE; Neiner D; Saraf LV; Droubay TC; Warner MG; Addleman RS
    Langmuir; 2012 Feb; 28(8):3931-7. PubMed ID: 22329500
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A three-dimensional carbon nanotube network for water treatment.
    Camilli L; Pisani C; Gautron E; Scarselli M; Castrucci P; D'Orazio F; Passacantando M; Moscone D; De Crescenzi M
    Nanotechnology; 2014 Feb; 25(6):065701. PubMed ID: 24434944
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of biodegradability of NOM after ozonation.
    Yavich AA; Lee KH; Chen KC; Pape L; Masten SJ
    Water Res; 2004 Jul; 38(12):2839-46. PubMed ID: 15223277
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Remarkable efficiency of ultrafine superparamagnetic iron(III) oxide nanoparticles toward arsenate removal from aqueous environment.
    Kilianová M; Prucek R; Filip J; Kolařík J; Kvítek L; Panáček A; Tuček J; Zbořil R
    Chemosphere; 2013 Nov; 93(11):2690-7. PubMed ID: 24054133
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mineralization and biodegradability enhancement of natural organic matter by ozone-VUV in comparison with ozone, VUV, ozone-UV, and UV: effects of pH and ozone dose.
    Ratpukdi T; Siripattanakul S; Khan E
    Water Res; 2010 Jun; 44(11):3531-43. PubMed ID: 20417950
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioinspired materials for water supply and management: water collection, water purification and separation of water from oil.
    Brown PS; Bhushan B
    Philos Trans A Math Phys Eng Sci; 2016 Aug; 374(2073):. PubMed ID: 27354732
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reduced aggregation and sedimentation of zero-valent iron nanoparticles in the presence of guar gum.
    Tiraferri A; Chen KL; Sethi R; Elimelech M
    J Colloid Interface Sci; 2008 Aug; 324(1-2):71-9. PubMed ID: 18508073
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Environmental applications of chitosan and its derivatives.
    Yong SK; Shrivastava M; Srivastava P; Kunhikrishnan A; Bolan N
    Rev Environ Contam Toxicol; 2015; 233():1-43. PubMed ID: 25367132
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.