These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 25054865)

  • 1. Real-time visualization of diffusion-controlled nanowire growth in solution.
    Ye S; Chen Z; Ha YC; Wiley BJ
    Nano Lett; 2014 Aug; 14(8):4671-6. PubMed ID: 25054865
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How Copper Nanowires Grow and How To Control Their Properties.
    Ye S; Stewart IE; Chen Z; Li B; Rathmell AR; Wiley BJ
    Acc Chem Res; 2016 Mar; 49(3):442-51. PubMed ID: 26872359
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Copper(II) 1,4-naphthalenedicarboxylate on copper foam nanowire arrays for electrochemical immunosensing of the prostate specific antigen.
    Chen ZA; Lu W; Bao C; Niu Q; Cao X; Wang H; Yao RX
    Mikrochim Acta; 2019 Nov; 186(12):758. PubMed ID: 31707617
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Large-scale synthesis and phase transformation of CuSe, CuInSe2, and CuInSe2/CuInS2 core/shell nanowire bundles.
    Xu J; Lee CS; Tang YB; Chen X; Chen ZH; Zhang WJ; Lee ST; Zhang W; Yang Z
    ACS Nano; 2010 Apr; 4(4):1845-50. PubMed ID: 20210350
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Self-Supported CuO/Cu Nanowire Electrode as Highly Efficient Sensor for COD Measurement.
    Huang X; Zhu Y; Yang W; Jiang A; Jin X; Zhang Y; Yan L; Zhang G; Liu Z
    Molecules; 2019 Aug; 24(17):. PubMed ID: 31466335
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective electrochemical reduction of CO2 to CO on CuO-derived Cu nanowires.
    Ma M; Djanashvili K; Smith WA
    Phys Chem Chem Phys; 2015 Aug; 17(32):20861-7. PubMed ID: 26214799
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controlled fabrication of photoactive copper oxide-cobalt oxide nanowire heterostructures for efficient phenol photodegradation.
    Shi W; Chopra N
    ACS Appl Mater Interfaces; 2012 Oct; 4(10):5590-607. PubMed ID: 22985284
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dielectrophoretic growth of platinum nanowires: concentration and temperature dependence of the growth velocity.
    Nerowski A; Poetschke M; Bobeth M; Opitz J; Cuniberti G
    Langmuir; 2012 May; 28(19):7498-504. PubMed ID: 22509843
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanowire Oriented On-Surface Growth of Chiral Cystine Crystalline Nanosheets.
    Zhang S; Zhang F; Qin H; Hu L; Jin J
    Langmuir; 2015 Aug; 31(32):8795-801. PubMed ID: 26203777
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CuO nanowire/microflower/nanowire modified Cu electrode with enhanced electrochemical performance for non-enzymatic glucose sensing.
    Li C; Yamahara H; Lee Y; Tabata H; Delaunay JJ
    Nanotechnology; 2015 Jul; 26(30):305503. PubMed ID: 26159235
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-Supported Cu-Based Nanowire Arrays as Noble-Metal-Free Electrocatalysts for Oxygen Evolution.
    Hou CC; Fu WF; Chen Y
    ChemSusChem; 2016 Aug; 9(16):2069-73. PubMed ID: 27440473
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanorecycling: Monolithic Integration of Copper and Copper Oxide Nanowire Network Electrode through Selective Reversible Photothermochemical Reduction.
    Han S; Hong S; Yeo J; Kim D; Kang B; Yang MY; Ko SH
    Adv Mater; 2015 Nov; 27(41):6397-403. PubMed ID: 26372164
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ligand-functionalised copper(II) hydroxide for quantum dot photoluminescence quenching.
    Wylie-van Eerd BJ; Young AG; Al-Salim NI; Kemmitt T; Strickland NM
    J Colloid Interface Sci; 2010 Jun; 346(2):288-95. PubMed ID: 20350726
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemical synthesis of flower-like hybrid Cu(OH)
    Shinde SK; Fulari VJ; Kim DY; Maile NC; Koli RR; Dhaygude HD; Ghodake GS
    Colloids Surf B Biointerfaces; 2017 Aug; 156():165-174. PubMed ID: 28528133
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of hierarchical three-dimensional copper oxide nanostructures through a biomineralization-inspired approach.
    Fei X; Shao Z; Chen X
    Nanoscale; 2013 Sep; 5(17):7991-7. PubMed ID: 23863944
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure, growth kinetics, and ledge flow during vapor-solid-solid growth of copper-catalyzed silicon nanowires.
    Wen CY; Reuter MC; Tersoff J; Stach EA; Ross FM
    Nano Lett; 2010 Feb; 10(2):514-9. PubMed ID: 20041666
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low-temperature large-scale synthesis and electrical testing of ultralong copper nanowires.
    Mohl M; Pusztai P; Kukovecz A; Konya Z; Kukkola J; Kordas K; Vajtai R; Ajayan PM
    Langmuir; 2010 Nov; 26(21):16496-502. PubMed ID: 20597526
    [TBL] [Abstract][Full Text] [Related]  

  • 18. True nanocable assemblies with insulating BN nanotube sheaths and conducting Cu nanowire cores.
    Zhou Z; Zhao J; Chen Z; Gao X; Lu JP; von Ragué Schleyer P; Yang CK
    J Phys Chem B; 2006 Feb; 110(6):2529-32. PubMed ID: 16471851
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanowires: Quantitative Probing of Cu(2+) Ions Naturally Present in Single Living Cells (Adv. Mater. 21/2016).
    Lee J; Lee HR; Pyo J; Jung Y; Seo JY; Ryu HG; Kim KT; Je JH
    Adv Mater; 2016 Jun; 28(21):3978. PubMed ID: 27246918
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amylose-directed synthesis of CuS composite nanowires and microspheres.
    Li Y; Hu J; Liu G; Zhang G; Zou H; Shi J
    Carbohydr Polym; 2013 Jan; 92(1):555-63. PubMed ID: 23218335
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.