These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 25054865)

  • 21. In situ reaction on Cu(OH)2 nanoribbons for controlling growth of nanorods arrays of copper oxalate.
    Cui S; Liu H; Jiang L; Zhong Z; Feng X; Zhu Y; Li Y
    J Nanosci Nanotechnol; 2007 Mar; 7(3):1001-5. PubMed ID: 17450866
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Facile synthesis of novel areca flower like Cu
    Dat PV; Viet NX
    Mater Sci Eng C Mater Biol Appl; 2019 Oct; 103():109758. PubMed ID: 31349500
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Self-limiting electrodeposition of hierarchical MnO₂ and M(OH)₂/MnO₂ nanofibril/nanowires: mechanism and supercapacitor properties.
    Duay J; Sherrill SA; Gui Z; Gillette E; Lee SB
    ACS Nano; 2013 Feb; 7(2):1200-14. PubMed ID: 23327566
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hemocompatible and antibacterial porous membranes with heparinized copper hydroxide nanofibers as separation layer.
    Zhu LJ; Zhu LP; Yi Z; Jiang JH; Zhu BK; Xu YY
    Colloids Surf B Biointerfaces; 2013 Oct; 110():36-44. PubMed ID: 23707848
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Study on the oxidation of copper nanowire network electrodes for skin mountable flexible, stretchable and wearable electronics applications.
    Hong I; Lee S; Kim D; Cho H; Roh Y; An H; Hong S; Ko SH; Han S
    Nanotechnology; 2019 Feb; 30(7):074001. PubMed ID: 30523977
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rapid free chlorine decay in the presence of Cu(OH)2: chemistry and practical implications.
    Nguyen CK; Powers KA; Raetz MA; Parks JL; Edwards MA
    Water Res; 2011 Oct; 45(16):5302-12. PubMed ID: 21868051
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Inherent control of growth, morphology, and defect formation in germanium nanowires.
    Biswas S; Singha A; Morris MA; Holmes JD
    Nano Lett; 2012 Nov; 12(11):5654-63. PubMed ID: 23066796
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Oleylamine-Mediated Hydrothermal Growth of Millimeter-Long Cu Nanowires and Their Electrocatalytic Activity for Reduction of Nitrate.
    Zheng Y; Chen N; Wang C; Zhang X; Liu Z
    Nanomaterials (Basel); 2018 Mar; 8(4):. PubMed ID: 29584646
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Growth of copper sulfide dendrites and nanowires from elemental sulfur on TEM Cu grids under ambient conditions.
    Han Q; Sun S; Li J; Wang X
    Nanotechnology; 2011 Apr; 22(15):155607. PubMed ID: 21389583
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Direct electrodeposition of cable-like CuO@Cu nanowires array for non-enzymatic sensing.
    Dong J; Ren L; Zhang Y; Cui X; Hu P; Xu J
    Talanta; 2015 Jan; 132():719-26. PubMed ID: 25476370
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structure-Sensitive CO
    Li Y; Cui F; Ross MB; Kim D; Sun Y; Yang P
    Nano Lett; 2017 Feb; 17(2):1312-1317. PubMed ID: 28094953
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fabrication of Highly Flexible Copper Nanowires in Dual Surfactant Hydrothermal Process.
    Balela MDL; Orgen SB; Tan MR
    J Nanosci Nanotechnol; 2019 Nov; 19(11):7156-7162. PubMed ID: 31039870
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A supported copper hydroxide on titanium oxide as an efficient reusable heterogeneous catalyst for 1,3-dipolar cycloaddition of organic azides to terminal alkynes.
    Yamaguchi K; Oishi T; Katayama T; Mizuno N
    Chemistry; 2009 Oct; 15(40):10464-72. PubMed ID: 19718725
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Formation of copper nanowires by electroless deposition using microtubules as templates.
    Valenzuela K; Raghavan S; Deymier PA; Hoying J
    J Nanosci Nanotechnol; 2008 Jul; 8(7):3416-21. PubMed ID: 19051888
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Postsynthetic processing of copper hydroxide-silica tubes.
    Roszol L; Makki R; Steinbock O
    Chem Commun (Camb); 2013 Jun; 49(51):5736-8. PubMed ID: 23549138
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Thermodynamic spectral and kinetic analysis of the removal of Cu(II) from aqueous solution by sodium carbonate treated rice husk.
    Acharya J; Kumar U; Meikap BC
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2019; 54(8):801-809. PubMed ID: 30966870
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fabrication of ultrathin CuO nanowires augmenting oriented attachment crystal growth directed self-assembly of Cu(OH)
    Pathiraja G; Yarbrough R; Rathnayake H
    Nanoscale Adv; 2020 Jul; 2(7):2897-2906. PubMed ID: 36132408
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Chemical reduction kinetics of nitrate in aqueous solution by Mg/Cu bimetallic particles.
    Mortazavi SB; Ramavandi B; Moussavi G
    Environ Technol; 2011; 32(3-4):251-60. PubMed ID: 21780693
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synthesis and characterization of ES/Cu(OH)2 nanocomposite: a novel and high effective catalyst in the green synthesis of pyrano[4,3-b]pyrans.
    Mosaddegh E; Hassankhani A; Karimi-Maleh H
    Mater Sci Eng C Mater Biol Appl; 2015 Jan; 46():264-9. PubMed ID: 25491986
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A facile solution-chemistry method for Cu(OH)2 nanoribbon arrays with noticeable electrochemical hydrogen storage ability at room temperature.
    Gao P; Zhang M; Niu Z; Xiao Q
    Chem Commun (Camb); 2007 Dec; (48):5197-9. PubMed ID: 18060140
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.