These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 25054943)

  • 1. The direct anti-Markovnikov addition of mineral acids to styrenes.
    Wilger DJ; Grandjean JM; Lammert TR; Nicewicz DA
    Nat Chem; 2014 Aug; 6(8):720-6. PubMed ID: 25054943
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A General Approach to Catalytic Alkene Anti-Markovnikov Hydrofunctionalization Reactions via Acridinium Photoredox Catalysis.
    Margrey KA; Nicewicz DA
    Acc Chem Res; 2016 Sep; 49(9):1997-2006. PubMed ID: 27588818
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct catalytic anti-Markovnikov addition of carboxylic acids to alkenes.
    Perkowski AJ; Nicewicz DA
    J Am Chem Soc; 2013 Jul; 135(28):10334-7. PubMed ID: 23808532
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Radical Hydroarylation of Functionalized Olefins and Mechanistic Investigation of Photocatalytic Pyridyl Radical Reactions.
    Seath CP; Vogt DB; Xu Z; Boyington AJ; Jui NT
    J Am Chem Soc; 2018 Nov; 140(45):15525-15534. PubMed ID: 30354095
    [TBL] [Abstract][Full Text] [Related]  

  • 5. anti-Markovnikov Iodofluorination of Alkenes.
    Qian BY; Zhang W; Lin JH; Cao W; Xiao JC
    Chem Asian J; 2022 May; 17(9):e202200184. PubMed ID: 35266316
    [TBL] [Abstract][Full Text] [Related]  

  • 6. anti-Markovnikov hydroamination of alkenes catalyzed by a two-component organic photoredox system: direct access to phenethylamine derivatives.
    Nguyen TM; Manohar N; Nicewicz DA
    Angew Chem Int Ed Engl; 2014 Jun; 53(24):6198-201. PubMed ID: 24764195
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anti-Markovnikov hydroamination of alkenes catalyzed by an organic photoredox system.
    Nguyen TM; Nicewicz DA
    J Am Chem Soc; 2013 Jul; 135(26):9588-91. PubMed ID: 23768239
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photoredox-induced three-component azido- and aminotrifluoromethylation of alkenes.
    Dagousset G; Carboni A; Magnier E; Masson G
    Org Lett; 2014 Aug; 16(16):4340-3. PubMed ID: 25102254
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel intermolecular synthesis of γ-lactones via visible-light photoredox catalysis.
    Wei XJ; Yang DT; Wang L; Song T; Wu LZ; Liu Q
    Org Lett; 2013 Dec; 15(23):6054-7. PubMed ID: 24215594
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anti-Markovnikov alkene oxidation by metal-oxo-mediated enzyme catalysis.
    Hammer SC; Kubik G; Watkins E; Huang S; Minges H; Arnold FH
    Science; 2017 Oct; 358(6360):215-218. PubMed ID: 29026041
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reversing the Regioselectivity of Halofunctionalization Reactions through Cooperative Photoredox and Copper Catalysis.
    Griffin JD; Cavanaugh CL; Nicewicz DA
    Angew Chem Int Ed Engl; 2017 Feb; 56(8):2097-2100. PubMed ID: 28105772
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Directing-Group-Assisted Markovnikov-Selective Hydrothiolation of Styrenes with Thiols by Photoredox/Cobalt Catalysis.
    Xiao Q; Zhang H; Li JH; Jian JX; Tong QX; Zhong JJ
    Org Lett; 2021 May; 23(9):3604-3609. PubMed ID: 33843237
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visible-Light-Promoted Trifluoromethylthiolation of Styrenes by Dual Photoredox/Halide Catalysis.
    Honeker R; Garza-Sanchez RA; Hopkinson MN; Glorius F
    Chemistry; 2016 Mar; 22(13):4395-9. PubMed ID: 26880666
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Triple Photoredox/Cobalt/Brønsted Acid Catalysis Enabling Markovnikov Hydroalkoxylation of Unactivated Alkenes.
    Nakagawa M; Matsuki Y; Nagao K; Ohmiya H
    J Am Chem Soc; 2022 May; 144(18):7953-7959. PubMed ID: 35476545
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Organic Photoredox Catalysis as a General Strategy for Anti-Markovnikov Alkene Hydrofunctionalization.
    Nicewicz DA; Hamilton DS
    Synlett; 2014; 25(9):1191-1196. PubMed ID: 29657365
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Iron-catalyzed oxidative cross-coupling of phenols and alkenes.
    Kshirsagar UA; Regev C; Parnes R; Pappo D
    Org Lett; 2013 Jun; 15(12):3174-7. PubMed ID: 23758172
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energy Decomposition Analyses Reveal the Origins of Catalyst and Nucleophile Effects on Regioselectivity in Nucleopalladation of Alkenes.
    Qi X; Kohler DG; Hull KL; Liu P
    J Am Chem Soc; 2019 Jul; 141(30):11892-11904. PubMed ID: 31322875
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acid promoted radical-chain difunctionalization of styrenes with stabilized radicals and (N,O)-nucleophiles.
    Liu S; Klussmann M
    Chem Commun (Camb); 2020 Feb; 56(10):1557-1560. PubMed ID: 31930253
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanistic study of the oxidative coupling of styrene with 2-phenylpyridine derivatives catalyzed by cationic rhodium(III) via C-H activation.
    Brasse M; Cámpora J; Ellman JA; Bergman RG
    J Am Chem Soc; 2013 May; 135(17):6427-30. PubMed ID: 23590843
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct Aroylation of Olefins through a Cobalt/Photoredox-Catalyzed Decarboxylative and Dehydrogenative Coupling with α-Oxo Acids.
    Davies AM; D Hernandez R; Tunge JA
    Chemistry; 2022 Dec; 28(72):e202202781. PubMed ID: 36322775
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.