These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

664 related articles for article (PubMed ID: 25055167)

  • 41. Insights into the Impact of Native Defects on the Conductivity of CuVO
    Harb M; Cavallo L
    ACS Omega; 2018 Jun; 3(6):6605-6610. PubMed ID: 31458836
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Theoretical study of CeO2 and Ce2O3 using a screened hybrid density functional.
    Hay PJ; Martin RL; Uddin J; Scuseria GE
    J Chem Phys; 2006 Jul; 125(3):34712. PubMed ID: 16863378
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Modelling potential photovoltaic absorbers Cu3MCh4(M = V, Nb, Ta; Ch = S, Se, Te) using density functional theory.
    Kehoe AB; Scanlon DO; Watson GW
    J Phys Condens Matter; 2016 May; 28(17):175801. PubMed ID: 27033972
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Experimental and theoretical investigations of electronic structure and photoluminescence properties of β-Ag2MoO4 microcrystals.
    Gouveia AF; Sczancoski JC; Ferrer MM; Lima AS; Santos MR; Li MS; Santos RS; Longo E; Cavalcante LS
    Inorg Chem; 2014 Jun; 53(11):5589-99. PubMed ID: 24840935
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Band gap engineering of bulk ZrO2 by Ti doping.
    Gallino F; Di Valentin C; Pacchioni G
    Phys Chem Chem Phys; 2011 Oct; 13(39):17667-75. PubMed ID: 21897973
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Absorption and photoconductivity spectra of Ag₂GeS₃ crystal: experiment and theory.
    Reshak AH; Auluck S; Piasecki M; Myronchuk GL; Parasyuk O; Kityk IV; Kamarudin H
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Jul; 93():274-9. PubMed ID: 22484263
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Structural and electronic properties of ZrX2)and HfX2 (X=S and Se) from first principles calculations.
    Jiang H
    J Chem Phys; 2011 May; 134(20):204705. PubMed ID: 21639465
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A B-C-N hybrid porous sheet: an efficient metal-free visible-light absorption material.
    Lu R; Li F; Salafranca J; Kan E; Xiao C; Deng K
    Phys Chem Chem Phys; 2014 Mar; 16(9):4299-304. PubMed ID: 24452613
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Optical Absorption Exhibits Pseudo-Direct Band Gap of Wurtzite Gallium Phosphide.
    da Silva BC; Couto ODD; Obata HT; de Lima MM; Bonani FD; de Oliveira CE; Sipahi GM; Iikawa F; Cotta MA
    Sci Rep; 2020 May; 10(1):7904. PubMed ID: 32404930
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Rose-like monodisperse bismuth subcarbonate hierarchical hollow microspheres: one-pot template-free fabrication and excellent visible light photocatalytic activity and photochemical stability for NO removal in indoor air.
    Dong F; Lee SC; Wu Z; Huang Y; Fu M; Ho WK; Zou S; Wang B
    J Hazard Mater; 2011 Nov; 195():346-54. PubMed ID: 21903327
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Indirect-to-direct band gap transition and optical properties of metal alloys of Cs
    Liu D; Zha W; Yuan R; Lou B; Sa R
    RSC Adv; 2020 Oct; 10(60):36734-36740. PubMed ID: 35517972
    [TBL] [Abstract][Full Text] [Related]  

  • 52. FT-IR, UV-vis, 1H and 13C NMR spectra and the equilibrium structure of organic dye molecule disperse red 1 acrylate: a combined experimental and theoretical analysis.
    Cinar M; Coruh A; Karabacak M
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Dec; 83(1):561-9. PubMed ID: 21958518
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A DFT study on structural, vibrational properties, and quasiparticle band structure of solid nitromethane.
    Appalakondaiah S; Vaitheeswaran G; Lebègue S
    J Chem Phys; 2013 May; 138(18):184705. PubMed ID: 23676062
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Band gap engineering of double-cation-impurity-doped anatase-titania for visible-light photocatalysts: a hybrid density functional theory approach.
    Long R; English NJ
    Phys Chem Chem Phys; 2011 Aug; 13(30):13698-703. PubMed ID: 21701732
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Specific features of the electronic structure of a novel ternary Tl3PbI5 optoelectronic material.
    Brik MG; Kityk IV; Denysyuk NM; Khyzhun OY; Levkovets SI; Parasyuk OV; Fedorchuk AO; Myronchuk GL
    Phys Chem Chem Phys; 2014 Jul; 16(25):12838-47. PubMed ID: 24845392
    [TBL] [Abstract][Full Text] [Related]  

  • 56. An Ag3PO4/nitridized Sr2Nb2O7 composite photocatalyst with adjustable band structures for efficient elimination of gaseous organic pollutants under visible light irradiation.
    Guo J; Zhou H; Ouyang S; Kako T; Ye J
    Nanoscale; 2014 Jul; 6(13):7303-11. PubMed ID: 24847986
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Theoretical and Experimental Study of the Crystal Structures, Lattice Vibrations, and Band Structures of Monazite-Type PbCrO4, PbSeO4, SrCrO4, and SrSeO4.
    Errandonea D; Muñoz A; Rodríguez-Hernández P; Proctor JE; Sapiña F; Bettinelli M
    Inorg Chem; 2015 Aug; 54(15):7524-35. PubMed ID: 26161677
    [TBL] [Abstract][Full Text] [Related]  

  • 58. DFT description on electronic structure and optical absorption properties of anionic S-doped anatase TiO2.
    Tian F; Liu C
    J Phys Chem B; 2006 Sep; 110(36):17866-71. PubMed ID: 16956274
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Controlling the band gap energy of cluster-assembled materials.
    Mandal S; Reber AC; Qian M; Weiss PS; Khanna SN; Sen A
    Acc Chem Res; 2013 Nov; 46(11):2385-95. PubMed ID: 23734558
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Versatile Single-Layer Sodium Phosphidostannate(II): Strain-Tunable Electronic Structure, Excellent Mechanical Flexibility, and an Ideal Gap for Photovoltaics.
    Jiao Y; Ma F; Gao G; Bell J; Frauenheim T; Du A
    J Phys Chem Lett; 2015 Jul; 6(14):2682-7. PubMed ID: 26266848
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 34.