BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 25055242)

  • 1. Electrochemical flow-based solution-solid growth of the Cu2O nanorod array: potential application to lithium ion batteries.
    Shin JH; Park SH; Hyun SM; Kim JW; Park HM; Song JY
    Phys Chem Chem Phys; 2014 Sep; 16(34):18226-32. PubMed ID: 25055242
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Synergetic Effect Induced High Electrochemical Performance of CuO/Cu
    Wang LH; Gao S; Ren LL; Zhou EL; Qin YF
    Front Chem; 2021; 9():790659. PubMed ID: 34881227
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Template-Free Electrochemical Growth of Ni-Decorated ZnO Nanorod Array: Application to an Anode of Lithium Ion Battery.
    Park HN; Park SH; Shin JH; Jeong SH; Song JY
    Front Chem; 2019; 7():415. PubMed ID: 31245354
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrochemical fabrication and characterization of Cu/Cu2O multi-layered micro and nanorods in Li-ion batteries.
    Rehnlund D; Valvo M; Tai CW; Ångström J; Sahlberg M; Edström K; Nyholm L
    Nanoscale; 2015 Aug; 7(32):13591-604. PubMed ID: 26206712
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A three-dimensional hierarchical Fe2O3@NiO core/shell nanorod array on carbon cloth: a new class of anode for high-performance lithium-ion batteries.
    Xiong QQ; Tu JP; Xia XH; Zhao XY; Gu CD; Wang XL
    Nanoscale; 2013 Sep; 5(17):7906-12. PubMed ID: 23851378
    [TBL] [Abstract][Full Text] [Related]  

  • 6. One-Step Catalytic Synthesis of CuO/Cu2O in a Graphitized Porous C Matrix Derived from the Cu-Based Metal-Organic Framework for Li- and Na-Ion Batteries.
    Kim AY; Kim MK; Cho K; Woo JY; Lee Y; Han SH; Byun D; Choi W; Lee JK
    ACS Appl Mater Interfaces; 2016 Aug; 8(30):19514-23. PubMed ID: 27398693
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Facile synthesis of loaf-like ZnMn₂O₄ nanorods and their excellent performance in Li-ion batteries.
    Bai Z; Fan N; Sun C; Ju Z; Guo C; Yang J; Qian Y
    Nanoscale; 2013 Mar; 5(6):2442-7. PubMed ID: 23403451
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formation of uniform CuO nanorods by spontaneous aggregation: Selective synthesis of CuO, Cu2O, and Cu nanoparticles by a solid-liquid phase arc discharge process.
    Yao WT; Yu SH; Zhou Y; Jiang J; Wu QS; Zhang L; Jiang J
    J Phys Chem B; 2005 Jul; 109(29):14011-6. PubMed ID: 16852759
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A 3D MoO
    Herdt T; Bruns M; Schneider JJ
    Dalton Trans; 2018 Oct; 47(42):14897-14907. PubMed ID: 30019045
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In situ synthesis of CuO and Cu nanostructures with promising electrochemical and wettability properties.
    Zhang Q; Xu D; Zhou X; Wu X; Zhang K
    Small; 2014 Mar; 10(5):935-43. PubMed ID: 24174010
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conversion of CuO nanoplates into porous hybrid Cu2O/polypyrrole nanoflakes through a pyrrole-induced reductive transformation reaction.
    Xu Y; Wang H; Zhu R; Liu C; Wu X; Zhang B
    Chem Asian J; 2013 Jun; 8(6):1120-7. PubMed ID: 23610084
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-performance lithium storage in an ultrafine manganese fluoride nanorod anode with enhanced electrochemical activation based on conversion reaction.
    Rui K; Wen Z; Huang X; Lu Y; Jin J; Shen C
    Phys Chem Chem Phys; 2016 Feb; 18(5):3780-7. PubMed ID: 26766389
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient solar photoelectrosynthesis of methanol from carbon dioxide using hybrid CuO-Cu2O semiconductor nanorod arrays.
    Ghadimkhani G; de Tacconi NR; Chanmanee W; Janaky C; Rajeshwar K
    Chem Commun (Camb); 2013 Feb; 49(13):1297-9. PubMed ID: 23296091
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrochemical Properties of Rutile TiO
    Yu Y; Sun D; Wang H; Wang H
    Nanoscale Res Lett; 2016 Dec; 11(1):448. PubMed ID: 27709562
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solution-Liquid-Solid Synthesis, Properties, and Applications of One-Dimensional Colloidal Semiconductor Nanorods and Nanowires.
    Wang F; Dong A; Buhro WE
    Chem Rev; 2016 Sep; 116(18):10888-933. PubMed ID: 26974736
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microwave-assisted synthesis of dual-conducting Cu2O@Cu-graphene system with improved electrochemical performance as anode material for lithium batteries.
    Li N; Xiao Y; Hu C; Cao M
    Chem Asian J; 2013 Sep; 8(9):1960-5. PubMed ID: 23757216
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assembling metal oxide nanocrystals into dense, hollow, porous nanoparticles for lithium-ion and lithium-oxygen battery application.
    Ming J; Wu Y; Park JB; Lee JK; Zhao F; Sun YK
    Nanoscale; 2013 Nov; 5(21):10390-6. PubMed ID: 24056975
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [100] Directed Cu-doped h-CoO nanorods: elucidation of the growth mechanism and application to lithium-ion batteries.
    Nam KM; Choi YC; Jung SC; Kim YI; Jo MR; Park SH; Kang YM; Han YK; Park JT
    Nanoscale; 2012 Jan; 4(2):473-7. PubMed ID: 22095097
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TiNb2O7 nanoparticles assembled into hierarchical microspheres as high-rate capability and long-cycle-life anode materials for lithium ion batteries.
    Li H; Shen L; Pang G; Fang S; Luo H; Yang K; Zhang X
    Nanoscale; 2015 Jan; 7(2):619-24. PubMed ID: 25423342
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.