These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 25055363)

  • 41. Major role of organic anion transporter 3 in the transport of indoxyl sulfate in the kidney.
    Deguchi T; Ohtsuki S; Otagiri M; Takanaga H; Asaba H; Mori S; Terasaki T
    Kidney Int; 2002 May; 61(5):1760-8. PubMed ID: 11967025
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Protein-bound uremic toxins - biological effects and impact on morbidity in patients with chronic kidney disease.
    Gomółka M; Niemczyk S
    Przegl Lek; 2017; 74(3):110-4. PubMed ID: 29694770
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Exploring binding characteristics and the related competition of different protein-bound uremic toxins.
    Deltombe O; de Loor H; Glorieux G; Dhondt A; Van Biesen W; Meijers B; Eloot S
    Biochimie; 2017 Aug; 139():20-26. PubMed ID: 28528271
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Improved dialysis removal of protein-bound uremic toxins by salvianolic acids.
    Li J; Wang Y; Xu X; Cao W; Shen Z; Wang N; Leng J; Zou N; Shang E; Zhu Z; Guo J; Duan J
    Phytomedicine; 2019 Apr; 57():166-173. PubMed ID: 30772752
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Update of uremic toxin research by mass spectrometry.
    Niwa T
    Mass Spectrom Rev; 2011; 30(3):510-21. PubMed ID: 21328600
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Clinical studies and chronic kidney disease: what did we learn recently?
    Liabeuf S; Neirynck N; Drüeke TB; Vanholder R; Massy ZA
    Semin Nephrol; 2014 Mar; 34(2):164-79. PubMed ID: 24780471
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Uremic pruritus pathogenesis, revisited.
    Attia EA; Hassan AA
    Arab J Nephrol Transplant; 2014 May; 7(2):91-6. PubMed ID: 25366503
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Role of uremic toxins in erythropoiesis-stimulating agent resistance in chronic kidney disease and dialysis patients.
    Nangaku M; Mimura I; Yamaguchi J; Higashijima Y; Wada T; Tanaka T
    J Ren Nutr; 2015 Mar; 25(2):160-3. PubMed ID: 25556149
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Updates on the Mechanisms and the Care of Cardiovascular Calcification in Chronic Kidney Disease.
    Hénaut L; Chillon JM; Kamel S; Massy ZA
    Semin Nephrol; 2018 May; 38(3):233-250. PubMed ID: 29753400
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Uremic Toxins and Cardiovascular Risk in Chronic Kidney Disease: What Have We Learned Recently beyond the Past Findings?
    El Chamieh C; Liabeuf S; Massy Z
    Toxins (Basel); 2022 Apr; 14(4):. PubMed ID: 35448889
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Canagliflozin reduces plasma uremic toxins and alters the intestinal microbiota composition in a chronic kidney disease mouse model.
    Mishima E; Fukuda S; Kanemitsu Y; Saigusa D; Mukawa C; Asaji K; Matsumoto Y; Tsukamoto H; Tachikawa T; Tsukimi T; Fukuda NN; Ho HJ; Kikuchi K; Suzuki C; Nanto F; Suzuki T; Ito S; Soga T; Tomioka Y; Abe T
    Am J Physiol Renal Physiol; 2018 Oct; 315(4):F824-F833. PubMed ID: 29167170
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Association of indoxyl sulfate with fibroblast growth factor 23 in patients with advanced chronic kidney disease.
    Lin CJ; Pan CF; Chuang CK; Liu HL; Sun FJ; Wang TJ; Chen HH; Wu CJ
    Am J Med Sci; 2014 May; 347(5):370-6. PubMed ID: 24051956
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Meta-Analysis of the Associations of p-Cresyl Sulfate (PCS) and Indoxyl Sulfate (IS) with Cardiovascular Events and All-Cause Mortality in Patients with Chronic Renal Failure.
    Lin CJ; Wu V; Wu PC; Wu CJ
    PLoS One; 2015; 10(7):e0132589. PubMed ID: 26173073
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effects of Uremic Toxins from the Gut Microbiota on Bone: A Brief Look at Chronic Kidney Disease.
    Black AP; Cardozo LF; Mafra D
    Ther Apher Dial; 2015 Oct; 19(5):436-40. PubMed ID: 25944654
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Release of uremic retention solutes from protein binding by hypertonic predilution hemodiafiltration.
    Böhringer F; Jankowski V; Gajjala PR; Zidek W; Jankowski J
    ASAIO J; 2015; 61(1):55-60. PubMed ID: 25419832
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Uremic Toxins and Clinical Outcomes: The Impact of Kidney Transplantation.
    Liabeuf S; Cheddani L; Massy ZA
    Toxins (Basel); 2018 Jun; 10(6):. PubMed ID: 29874852
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Adsorption capacity of poly(ether imide) microparticles to uremic toxins.
    Tetali SD; Jankowski V; Luetzow K; Kratz K; Lendlein A; Jankowski J
    Clin Hemorheol Microcirc; 2016; 61(4):657-65. PubMed ID: 26639769
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Aryl Hydrocarbon Receptor Activation in Chronic Kidney Disease: Role of Uremic Toxins.
    Brito JS; Borges NA; Esgalhado M; Magliano DC; Soulage CO; Mafra D
    Nephron; 2017; 137(1):1-7. PubMed ID: 28490014
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Vascular incompetence in dialysis patients--protein-bound uremic toxins and endothelial dysfunction.
    Jourde-Chiche N; Dou L; Cerini C; Dignat-George F; Brunet P
    Semin Dial; 2011; 24(3):327-37. PubMed ID: 21682773
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Future Avenues to Decrease Uremic Toxin Concentration.
    Vanholder RC; Eloot S; Glorieux GL
    Am J Kidney Dis; 2016 Apr; 67(4):664-76. PubMed ID: 26500179
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.