These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 25055369)

  • 1. Source selection for real-time user intent recognition toward volitional control of artificial legs.
    Fan Zhang ; He Huang
    IEEE J Biomed Health Inform; 2013 Sep; 17(5):907-14. PubMed ID: 25055369
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real-time implementation of an intent recognition system for artificial legs.
    Zhang F; Dou Z; Nunnery M; Huang H
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():2997-3000. PubMed ID: 22254971
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering platform and experimental protocol for design and evaluation of a neurally-controlled powered transfemoral prosthesis.
    Zhang F; Liu M; Harper S; Lee M; Huang H
    J Vis Exp; 2014 Jul; (89):. PubMed ID: 25079449
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Continuous locomotion-mode identification for prosthetic legs based on neuromuscular-mechanical fusion.
    Huang H; Zhang F; Hargrove LJ; Dou Z; Rogers DR; Englehart KB
    IEEE Trans Biomed Eng; 2011 Oct; 58(10):2867-75. PubMed ID: 21768042
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of using EMG and mechanical sensors to enhance intent recognition in powered lower limb prostheses.
    Young AJ; Kuiken TA; Hargrove LJ
    J Neural Eng; 2014 Oct; 11(5):056021. PubMed ID: 25242111
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preliminary study of the effect of user intent recognition errors on volitional control of powered lower limb prostheses.
    Zhang F; Liu M; Huang H
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():2768-71. PubMed ID: 23366499
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Volitional control of a prosthetic knee using surface electromyography.
    Ha KH; Varol HA; Goldfarb M
    IEEE Trans Biomed Eng; 2011 Jan; 58(1):144-51. PubMed ID: 20805047
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection of critical errors of locomotion mode recognition for volitional control of powered transfemoral prostheses.
    Fan Zhang ; Ming Liu ; He Huang
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():1128-31. PubMed ID: 26736464
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of Timing to Switch Control Mode in Powered Knee Prostheses during Task Transitions.
    Zhang F; Liu M; Huang H
    PLoS One; 2015; 10(7):e0133965. PubMed ID: 26197084
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of locomotion mode recognition errors on volitional control of powered above-knee prostheses.
    Zhang F; Liu M; Huang H
    IEEE Trans Neural Syst Rehabil Eng; 2015 Jan; 23(1):64-72. PubMed ID: 25486645
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toward design of an environment-aware adaptive locomotion-mode-recognition system.
    Du L; Zhang F; Liu M; Huang H
    IEEE Trans Biomed Eng; 2012 Oct; 59(10):2716-25. PubMed ID: 22996721
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving the performance of a neural-machine interface for prosthetic legs using adaptive pattern classifiers.
    Du L; Zhang F; He H; Huang H
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1571-4. PubMed ID: 24110001
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Online adaptive neural control of a robotic lower limb prosthesis.
    Spanias JA; Simon AM; Finucane SB; Perreault EJ; Hargrove LJ
    J Neural Eng; 2018 Feb; 15(1):016015. PubMed ID: 29019467
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gradient-Based Multi-Objective Feature Selection for Gait Mode Recognition of Transfemoral Amputees.
    Khademi G; Mohammadi H; Simon D
    Sensors (Basel); 2019 Jan; 19(2):. PubMed ID: 30634668
    [TBL] [Abstract][Full Text] [Related]  

  • 15. EMG control of a bionic knee prosthesis: exploiting muscle co-contractions for improved locomotor function.
    Dawley JA; Fite KB; Fulk GD
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650389. PubMed ID: 24187208
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improving the performance of a neural-machine interface for artificial legs using prior knowledge of walking environment.
    Huang H; Dou Z; Zhang F; Nunnery MJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():4255-8. PubMed ID: 22255279
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A strategy for identifying locomotion modes using surface electromyography.
    Huang H; Kuiken TA; Lipschutz RD
    IEEE Trans Biomed Eng; 2009 Jan; 56(1):65-73. PubMed ID: 19224720
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Voluntary Control of Residual Antagonistic Muscles in Transtibial Amputees: Reciprocal Activation, Coactivation, and Implications for Direct Neural Control of Powered Lower Limb Prostheses.
    Huang S; Huang H
    IEEE Trans Neural Syst Rehabil Eng; 2019 Jan; 27(1):85-95. PubMed ID: 30530332
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stiffness and position control of a prosthetic wrist by means of an EMG interface.
    Rao S; Carloni R; Stramigioli S
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():495-8. PubMed ID: 21096538
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interface Prostheses With Classifier-Feedback-Based User Training.
    Fang Y; Zhou D; Li K; Liu H
    IEEE Trans Biomed Eng; 2017 Nov; 64(11):2575-2583. PubMed ID: 28026744
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.