BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 25055388)

  • 1. Dependence Independence Measure for Posterior and Anterior EMG Sensors Used in Simple and Complex Finger Flexion Movements: Evaluation Using SDICA.
    Naik GR; Baker KG; Nguyen HT
    IEEE J Biomed Health Inform; 2015 Sep; 19(5):1689-1696. PubMed ID: 25055388
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantifying forearm muscle activity during wrist and finger movements by means of multi-channel electromyography.
    Gazzoni M; Celadon N; Mastrapasqua D; Paleari M; Margaria V; Ariano P
    PLoS One; 2014; 9(10):e109943. PubMed ID: 25289669
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Decoding subtle forearm flexions using fractal features of surface electromyogram from single and multiple sensors.
    Arjunan SP; Kumar DK
    J Neuroeng Rehabil; 2010 Oct; 7():53. PubMed ID: 20964863
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonnegative matrix factorization for the identification of EMG finger movements: evaluation using matrix analysis.
    Naik GR; Nguyen HT
    IEEE J Biomed Health Inform; 2015 Mar; 19(2):478-485. PubMed ID: 25486650
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Classification of finger movements for the dexterous hand prosthesis control with surface electromyography.
    Al-Timemy AH; Bugmann G; Escudero J; Outram N
    IEEE J Biomed Health Inform; 2013 May; 17(3):608-18. PubMed ID: 24592463
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proportional estimation of finger movements from high-density surface electromyography.
    Celadon N; Došen S; Binder I; Ariano P; Farina D
    J Neuroeng Rehabil; 2016 Aug; 13(1):73. PubMed ID: 27488270
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extracting and Classifying Spatial Muscle Activation Patterns in Forearm Flexor Muscles Using High-Density Electromyogram Recordings.
    Dai C; Hu X
    Int J Neural Syst; 2019 Feb; 29(1):1850025. PubMed ID: 29954235
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimal electrode configurations for finger movement classification using EMG.
    Andrews A; Morin E; McLean L
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():2987-90. PubMed ID: 19963553
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrasound-Based Sensing Models for Finger Motion Classification.
    Huang Y; Yang X; Li Y; Zhou D; He K; Liu H
    IEEE J Biomed Health Inform; 2018 Sep; 22(5):1395-1405. PubMed ID: 29990031
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of hand and finger movements using multi run ICA of surface electromyogram.
    Naik GR; Kumar DK
    J Med Syst; 2012 Apr; 36(2):841-51. PubMed ID: 20703649
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Myoelectric Signal Classification of Targeted Muscles Using Dictionary Learning.
    Yoo HJ; Park HJ; Lee B
    Sensors (Basel); 2019 May; 19(10):. PubMed ID: 31126025
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Finger Movement Recognition via High-Density Electromyography of Intrinsic and Extrinsic Hand Muscles.
    Hu X; Song A; Wang J; Zeng H; Wei W
    Sci Data; 2022 Jun; 9(1):373. PubMed ID: 35768439
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Decoding of individuated finger movements using surface electromyography.
    Tenore FV; Ramos A; Fahmy A; Acharya S; Etienne-Cummings R; Thakor NV
    IEEE Trans Biomed Eng; 2009 May; 56(5):1427-34. PubMed ID: 19473933
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Individual finger classification from surface EMG: Influence of electrode set.
    Celadon N; Dosen S; Paleari M; Farina D; Ariano P
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():7284-7. PubMed ID: 26737973
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toward direct biocontrol using surface EMG signals: control of finger and wrist joint models.
    Reddy NP; Gupta V
    Med Eng Phys; 2007 Apr; 29(3):398-403. PubMed ID: 16682244
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Decoding individuated finger flexions with Implantable MyoElectric Sensors.
    Baker JJ; Yatsenko D; Schorsch JF; DeMichele GA; Troyk PR; Hutchinson DT; Weir RF; Clark G; Greger B
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():193-6. PubMed ID: 19162626
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Classification of finger extension and flexion of EMG and Cyberglove data with modified ICA weight matrix.
    Naik GR; Acharyya A; Nguyen HT
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3829-32. PubMed ID: 25570826
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Continuous detection and decoding of dexterous finger flexions with implantable myoelectric sensors.
    Baker JJ; Scheme E; Englehart K; Hutchinson DT; Greger B
    IEEE Trans Neural Syst Rehabil Eng; 2010 Aug; 18(4):424-32. PubMed ID: 20378481
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ranking hand movements for myoelectric pattern recognition considering forearm muscle structure.
    Na Y; Kim SJ; Jo S; Kim J
    Med Biol Eng Comput; 2017 Aug; 55(8):1507-1518. PubMed ID: 28054301
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Towards identification of finger flexions using single channel surface electromyography--able bodied and amputee subjects.
    Kumar DK; Poosapadi Arjunan S; Singh VP
    J Neuroeng Rehabil; 2013 Jun; 10():50. PubMed ID: 23758881
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.