BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 25055682)

  • 1. [Properties of maize stalk biochar produced under different pyrolysis temperatures and its sorption capability to naphthalene].
    Huang H; Wang YX; Tang JC; Tang JC; Zhu WY
    Huan Jing Ke Xue; 2014 May; 35(5):1884-90. PubMed ID: 25055682
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Sorption of
    Ma FF; Zhao BW
    Huan Jing Ke Xue; 2017 Feb; 38(2):837-844. PubMed ID: 29964545
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fast and slow rates of naphthalene sorption to biochars produced at different temperatures.
    Chen Z; Chen B; Chiou CT
    Environ Sci Technol; 2012 Oct; 46(20):11104-11. PubMed ID: 22970831
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sorption mechanisms of neonicotinoids on biochars and the impact of deashing treatments on biochar structure and neonicotinoids sorption.
    Zhang P; Sun H; Ren C; Min L; Zhang H
    Environ Pollut; 2018 Mar; 234():812-820. PubMed ID: 29247944
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of slow pyrolysis biochars: effects of feedstocks and pyrolysis temperature on biochar properties.
    Kloss S; Zehetner F; Dellantonio A; Hamid R; Ottner F; Liedtke V; Schwanninger M; Gerzabek MH; Soja G
    J Environ Qual; 2012; 41(4):990-1000. PubMed ID: 22751041
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influences of feedstock sources and pyrolysis temperature on the properties of biochar and functionality as adsorbents: A meta-analysis.
    Hassan M; Liu Y; Naidu R; Parikh SJ; Du J; Qi F; Willett IR
    Sci Total Environ; 2020 Nov; 744():140714. PubMed ID: 32717463
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characteristics of maize biochar with different pyrolysis temperatures and its effects on organic carbon, nitrogen and enzymatic activities after addition to fluvo-aquic soil.
    Wang X; Zhou W; Liang G; Song D; Zhang X
    Sci Total Environ; 2015 Dec; 538():137-44. PubMed ID: 26298256
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nitrogen enrichment potential of biochar in relation to pyrolysis temperature and feedstock quality.
    Jassal RS; Johnson MS; Molodovskaya M; Black TA; Jollymore A; Sveinson K
    J Environ Manage; 2015 Apr; 152():140-4. PubMed ID: 25621388
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biochar characteristics produced from rice husks and their sorption properties for the acetanilide herbicide metolachlor.
    Wei L; Huang Y; Li Y; Huang L; Mar NN; Huang Q; Liu Z
    Environ Sci Pollut Res Int; 2017 Feb; 24(5):4552-4561. PubMed ID: 27957688
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes.
    Al-Wabel MI; Al-Omran A; El-Naggar AH; Nadeem M; Usman AR
    Bioresour Technol; 2013 Mar; 131():374-9. PubMed ID: 23376202
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterisation of biochar from maize residues produced in a self-purging pyrolysis reactor.
    Intani K; Latif S; Cao Z; Müller J
    Bioresour Technol; 2018 Oct; 265():224-235. PubMed ID: 29902655
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization and 2D structural model of corn straw and poplar leaf biochars.
    Zhao N; Lv Y; Yang X; Huang F; Yang J
    Environ Sci Pollut Res Int; 2018 Sep; 25(26):25789-25798. PubMed ID: 29270898
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface characterization of maize-straw-derived biochar and their sorption mechanism for Pb2+ and methylene blue.
    Guo C; Zou J; Yang J; Wang K; Song S
    PLoS One; 2020; 15(8):e0238105. PubMed ID: 32853282
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sorption of four hydrophobic organic contaminants by biochars derived from maize straw, wood dust and swine manure at different pyrolytic temperatures.
    Wang Z; Han L; Sun K; Jin J; Ro KS; Libra JA; Liu X; Xing B
    Chemosphere; 2016 Feb; 144():285-91. PubMed ID: 26364218
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potential phosphorus eutrophication mitigation strategy: Biochar carbon composition, thermal stability and pH influence phosphorus sorption.
    Ngatia LW; Hsieh YP; Nemours D; Fu R; Taylor RW
    Chemosphere; 2017 Aug; 180():201-211. PubMed ID: 28407550
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Adsorption and Influential Factors of Diuron on the Loess Soil by Adding Different Biochar Prepared at Varying Temperatures].
    Sun H; Jiang YF; Shi LP; Mu ZF; Zhan HY
    Huan Jing Ke Xue; 2016 Dec; 37(12):4857-4866. PubMed ID: 29965329
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of Temperature and Activation on Biochar Chemical Properties and Their Impact on Ammonium, Nitrate, and Phosphate Sorption.
    Zhang H; Voroney RP; Price GW
    J Environ Qual; 2017 Jul; 46(4):889-896. PubMed ID: 28783786
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular markers of benzene polycarboxylic acids in describing biochar physiochemical properties and sorption characteristics.
    Chang Z; Tian L; Wu M; Dong X; Peng J; Pan B
    Environ Pollut; 2018 Jun; 237():541-548. PubMed ID: 29524876
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sorption of hydrophobic organic compounds to a diverse suite of carbonaceous materials with emphasis on biochar.
    Kupryianchyk D; Hale S; Zimmerman AR; Harvey O; Rutherford D; Abiven S; Knicker H; Schmidt HP; Rumpel C; Cornelissen G
    Chemosphere; 2016 Feb; 144():879-87. PubMed ID: 26421628
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterisation of agricultural waste-derived biochars and their sorption potential for sulfamethoxazole in pasture soil: a spectroscopic investigation.
    Srinivasan P; Sarmah AK
    Sci Total Environ; 2015 Jan; 502():471-80. PubMed ID: 25290589
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.