These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 25055841)

  • 1. Respiratory tract lung geometry and dosimetry model for male Sprague-Dawley rats.
    Miller FJ; Asgharian B; Schroeter JD; Price O; Corley RA; Einstein DR; Jacob RE; Cox TC; Kabilan S; Bentley T
    Inhal Toxicol; 2014 Aug; 26(9):524-44. PubMed ID: 25055841
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a rhesus monkey lung geometry model and application to particle deposition in comparison to humans.
    Asgharian B; Price O; McClellan G; Corley R; Einstein DR; Jacob RE; Harkema J; Carey SA; Schelegle E; Hyde D; Kimbell JS; Miller FJ
    Inhal Toxicol; 2012 Nov; 24(13):869-99. PubMed ID: 23121298
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling particle deposition in the Balb/c mouse respiratory tract.
    Winkler-Heil R; Hofmann W
    Inhal Toxicol; 2016; 28(4):180-91. PubMed ID: 26986953
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of heterogeneity of lung structure on particle deposition in the rat lung.
    Hofmann W; Asgharian B; Bergmann R; Anjilvel S; Miller FJ
    Toxicol Sci; 2000 Feb; 53(2):430-7. PubMed ID: 10696791
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dosimetric adjustments for interspecies extrapolation of inhaled poorly soluble particles (PSP).
    Jarabek AM; Asgharian B; Miller FJ
    Inhal Toxicol; 2005; 17(7-8):317-34. PubMed ID: 16020031
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of airborne particulates on respiratory tract deposition of inhaled toluene and naphthalene in the rat.
    Roberts SM; Rohr AC; Mikheev VB; Munson J; Sabo-Attwood T
    Inhal Toxicol; 2018 Jan; 30(1):19-28. PubMed ID: 29465005
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deposition efficiency of inhaled particles (15-5000 nm) related to breathing pattern and lung function: an experimental study in healthy children and adults.
    Rissler J; Gudmundsson A; Nicklasson H; Swietlicki E; Wollmer P; Löndahl J
    Part Fibre Toxicol; 2017 Apr; 14(1):10. PubMed ID: 28388961
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling age-related particle deposition in humans.
    Asgharian B; Ménache MG; Miller FJ
    J Aerosol Med; 2004; 17(3):213-24. PubMed ID: 15625813
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of lobar differences in particle deposition in the human lung.
    Subramaniam RP; Asgharian B; Freijer JI; Miller FJ; Anjilvel S
    Inhal Toxicol; 2003 Jan; 15(1):1-21. PubMed ID: 12476357
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational modeling of nanoscale and microscale particle deposition, retention and dosimetry in the mouse respiratory tract.
    Asgharian B; Price OT; Oldham M; Chen LC; Saunders EL; Gordon T; Mikheev VB; Minard KR; Teeguarden JG
    Inhal Toxicol; 2014 Dec; 26(14):829-42. PubMed ID: 25373829
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Particle and inhalation exposure in human and monkey computational airway models.
    Lu Phuong N; Dang Khoa N; Inthavong K; Ito K
    Inhal Toxicol; 2018; 30(11-12):416-428. PubMed ID: 30618352
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Respiratory deposition and inhalability of monodisperse aerosols in Long-Evans rats.
    Asgharian B; Kelly JT; Tewksbury EW
    Toxicol Sci; 2003 Jan; 71(1):104-11. PubMed ID: 12520080
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of a drift flux model for simulating submicrometer aerosol dynamics in human upper tracheobronchial airways.
    Xi J; Longest PW
    Ann Biomed Eng; 2008 Oct; 36(10):1714-34. PubMed ID: 18712605
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An approach to assess the Particulate Matter exposure for the population living around a cement plant: modelling indoor air and particle deposition in the respiratory tract.
    Sánchez-Soberón F; Mari M; Kumar V; Rovira J; Nadal M; Schuhmacher M
    Environ Res; 2015 Nov; 143(Pt A):10-8. PubMed ID: 26408807
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influences of parameter uncertainties within the ICRP 66 respiratory tract model: particle deposition.
    Bolch WE; Farfán EB; Huh C; Huston TE; Bolch WE
    Health Phys; 2001 Oct; 81(4):378-94. PubMed ID: 11569633
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dosimetry of Particles: Critical Factors Having Risk Assessment Implications.
    Miller FJ
    Inhal Toxicol; 2000 Jan; 12 Suppl 3():389-95. PubMed ID: 26368640
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational modeling of aerosol deposition in respiratory tract: a review.
    Rostami AA
    Inhal Toxicol; 2009 Feb; 21(4):262-90. PubMed ID: 19235608
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influences of parameter uncertainties within the ICRP-66 respiratory tract model: particle clearance.
    Bolch WE; Huston TE; Farfán EB; Vernetson WG; Bolch WE
    Health Phys; 2003 Apr; 84(4):421-35. PubMed ID: 12705441
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational fluid-particle dynamics modeling of ultrafine to coarse particles deposition in the human respiratory system, down to the terminal bronchiole.
    Khoa ND; Li S; Phuong NL; Kuga K; Yabuuchi H; Kan-O K; Matsumoto K; Ito K
    Comput Methods Programs Biomed; 2023 Jul; 237():107589. PubMed ID: 37167881
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pattern of deposition of stainless steel welding fume particles inhaled into the respiratory systems of Sprague-Dawley rats exposed to a novel welding fume generating system.
    Yu IJ; Kim KJ; Chang HK; Song KS; Han KT; Han JH; Maeng SH; Chung YH; Park SH; Chung KH; Han JS; Chung HK
    Toxicol Lett; 2000 Jul; 116(1-2):103-11. PubMed ID: 10906427
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.