BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 25055970)

  • 21. Dynamic kinetic resolution of allylic alcohols mediated by ruthenium- and lipase-based catalysts.
    Lee D; Huh EA; Kim MJ; Jung HM; Koh JH; Park J
    Org Lett; 2000 Jul; 2(15):2377-9. PubMed ID: 10930288
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Titanium(III)-Catalyzed Reductive Umpolung Reaction for the Synthesis of 1,1-Disubstituted Tetrahydroisoquinolines.
    Luu HT; Wiesler S; Frey G; Streuff J
    Org Lett; 2015 May; 17(10):2478-81. PubMed ID: 25928360
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Lipase-catalyzed asymmetric synthesis of oxathiazinanones through dynamic covalent kinetic resolution.
    Hu L; Zhang Y; Ramström O
    Org Biomol Chem; 2014 Jun; 12(22):3572-5. PubMed ID: 24759850
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Synthesis of optically active vicinal fluorohydrins by lipase-catalyzed deracemization.
    Wölker D; Haufe G
    J Org Chem; 2002 May; 67(9):3015-21. PubMed ID: 11975561
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Preparation and catalytic performance of lipases encapsulated in sol-gel materials.
    Kato K; Gong Y; Saito T; Yokogawa Y
    Biosci Biotechnol Biochem; 2002 Jan; 66(1):221-3. PubMed ID: 11866115
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enantiodivergent Chemoenzymatic Dynamic Kinetic Resolution: Conversion of Racemic Propargyl Alcohols into Both Enantiomers.
    Horino S; Nishio T; Kawanishi S; Oki S; Nishihara K; Ikawa T; Kanomata K; Wagner K; Gröger H; Akai S
    Chemistry; 2022 Oct; 28(60):e202202437. PubMed ID: 36089534
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Novel chemoenzymatic strategy for the synthesis of enantiomerically pure secondary alcohols with sterically similar substituents.
    Abad JL; Soldevila C; Camps F; Clapés P
    J Org Chem; 2003 Jun; 68(13):5351-6. PubMed ID: 12816498
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Functional display of Pseudomonas and Burkholderia lipases using a translocator domain of EstA autotransporter on the cell surface of Escherichia coli.
    Yang TH; Kwon MA; Song JK; Pan JG; Rhee JS
    J Biotechnol; 2010 Apr; 146(3):126-9. PubMed ID: 20138931
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Anhydrides as acylating agents in the enzymatic resolution of an intermediate of (-)-Paroxetine.
    de Gonzalo G; Brieva R; Sánchez VM; Bayod M; Gotor V
    J Org Chem; 2003 Apr; 68(8):3333-6. PubMed ID: 12688815
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cross-cyclotrimerization with two nitriles as a synthetic pathway to unsymmetrically 3,3'-disubstituted bis(tetrahydroisoquinolines).
    Kadlcíková A; Kotora M
    Molecules; 2009 Aug; 14(8):2918-26. PubMed ID: 19701134
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Synthetic studies on (-)-lemonomycin: an efficient asymmetric synthesis of lemonomycinone amide.
    Wu YC; Bernadat G; Masson G; Couturier C; Schlama T; Zhu J
    J Org Chem; 2009 Mar; 74(5):2046-52. PubMed ID: 19196163
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Stereoselective hydrolysis of triglycerides by animal and microbial lipases.
    Rogalska E; Cudrey C; Ferrato F; Verger R
    Chirality; 1993; 5(1):24-30. PubMed ID: 8448074
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Direct sp3 C-H bond arylation, alkylation, and amidation of tetrahydroisoquinolines mediated by hypervalent iodine(III) under mild conditions.
    Muramatsu W; Nakano K; Li CJ
    Org Biomol Chem; 2014 Apr; 12(14):2189-92. PubMed ID: 24595886
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Stereoselectivity of microbial lipases. The substitution at position sn-2 of triacylglycerol analogs influences the stereoselectivity of different microbial lipases.
    Stadler P; Kovac A; Haalck L; Spener F; Paltauf F
    Eur J Biochem; 1995 Jan; 227(1-2):335-43. PubMed ID: 7851405
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Racemase activity of B. cepacia lipase leads to dual-function asymmetric dynamic kinetic resolution of α-aminonitriles.
    Vongvilai P; Linder M; Sakulsombat M; Svedendahl Humble M; Berglund P; Brinck T; Ramström O
    Angew Chem Int Ed Engl; 2011 Jul; 50(29):6592-5. PubMed ID: 21633990
    [No Abstract]   [Full Text] [Related]  

  • 36. Iridium-catalyzed asymmetric intramolecular allylic amidation: enantioselective synthesis of chiral tetrahydroisoquinolines and saturated nitrogen heterocycles.
    Teichert JF; Fañanás-Mastral M; Feringa BL
    Angew Chem Int Ed Engl; 2011 Jan; 50(3):688-91. PubMed ID: 21226154
    [No Abstract]   [Full Text] [Related]  

  • 37. Improvement of catalytic activity of lipase from Candida rugosa via sol-gel encapsulation in the presence of calix(aza)crown.
    Uyanik A; Sen N; Yilmaz M
    Bioresour Technol; 2011 Mar; 102(6):4313-8. PubMed ID: 21256747
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Chemoenzymatic dynamic kinetic resolution of primary amines using a recyclable palladium nanoparticle catalyst together with lipases.
    Gustafson KP; Lihammar R; Verho O; Engström K; Bäckvall JE
    J Org Chem; 2014 May; 79(9):3747-51. PubMed ID: 24724828
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structural and functional insights into the enzymatic activities of lipases from Burkholderia stagnalis and Burkholderia plantarii.
    Kataoka S; Kawamoto S; Kitagawa S; Kugimiya W; Tsumura K; Akutsu Y; Kubota T; Ishikawa K
    FEBS Lett; 2024 Jun; 598(11):1411-1421. PubMed ID: 38658173
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Determination of absolute configuration of secondary alcohols using lipase-catalyzed kinetic resolutions.
    Jing Q; Kazlauskas RJ
    Chirality; 2008 May; 20(5):724-35. PubMed ID: 18278808
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.