BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 25056130)

  • 61. Anti-human immunodeficiency virus type 1 agent alpha-hydroxy glycineamide enters the target cells via a mechanism of passive diffusion.
    Youssefi M; Vahlne A
    J Pharm Pharmacol; 2014 Oct; 66(10):1388-93. PubMed ID: 24780097
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Anti-HIV dendrimeric peptides.
    Yu Q; Li L; Tam JP
    Adv Exp Med Biol; 2009; 611():539-40. PubMed ID: 19400303
    [No Abstract]   [Full Text] [Related]  

  • 63. Diversity-Oriented Stapling Yields Intrinsically Cell-Penetrant Inducers of Autophagy.
    Peraro L; Zou Z; Makwana KM; Cummings AE; Ball HL; Yu H; Lin YS; Levine B; Kritzer JA
    J Am Chem Soc; 2017 Jun; 139(23):7792-7802. PubMed ID: 28414223
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Inhibition of HIV replication by derivatives of naphthalenedisulfonic acids.
    Mohan P; Sun D; Thornton A; Sarin PS
    AIDS; 1990 Aug; 4(8):821-2. PubMed ID: 2261142
    [No Abstract]   [Full Text] [Related]  

  • 65. Light-responsive helical polypeptides capable of reducing toxicity and unpacking DNA: toward nonviral gene delivery.
    Yin L; Tang H; Kim KH; Zheng N; Song Z; Gabrielson NP; Lu H; Cheng J
    Angew Chem Int Ed Engl; 2013 Aug; 52(35):9182-9186. PubMed ID: 23832670
    [No Abstract]   [Full Text] [Related]  

  • 66. Apoptosis inducing, conformationally constrained, dimeric peptide analogs of KLA with submicromolar cell penetrating abilities.
    Hyun S; Lee S; Kim S; Jang S; Yu J; Lee Y
    Biomacromolecules; 2014 Oct; 15(10):3746-52. PubMed ID: 25188534
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Cellular uptake and in vivo distribution of polyhistidine peptides.
    Iwasaki T; Tokuda Y; Kotake A; Okada H; Takeda S; Kawano T; Nakayama Y
    J Control Release; 2015 Jul; 210():115-24. PubMed ID: 25980622
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Design and characterization of a new peptide vector for short interfering RNA delivery.
    Chen B; Xu W; Pan R; Chen P
    J Nanobiotechnology; 2015 Jun; 13():39. PubMed ID: 26054932
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Cyclohexylalanine-Containing α-Helical Amphipathic Peptide Targets Cardiolipin, Rescuing Mitochondrial Dysfunction in Kidney Injury.
    Shin G; Hyun S; Kim D; Choi Y; Kim KH; Kim D; Kwon S; Kim YS; Yang SH; Yu J
    J Med Chem; 2024 Mar; 67(5):3385-3399. PubMed ID: 38112308
    [TBL] [Abstract][Full Text] [Related]  

  • 70. A Novel Time-Resolved Fluorescence Resonance Energy Transfer Assay for the Discovery of Small-Molecule Inhibitors of HIV-1 Tat-Regulated Transcription.
    Shin YH; Kim DE; Yu KL; Park CM; Kim HG; Kim KC; Bae S; Yoon CH
    Int J Mol Sci; 2023 May; 24(11):. PubMed ID: 37298089
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Cell-Penetrating Antimicrobial Peptides with Anti-Infective Activity against Intracellular Pathogens.
    Cruz GS; Santos ATD; Brito EHS; Rádis-Baptista G
    Antibiotics (Basel); 2022 Dec; 11(12):. PubMed ID: 36551429
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Research Progress of Conjugated Nanomedicine for Cancer Treatment.
    Zhao B; Chen S; Hong Y; Jia L; Zhou Y; He X; Wang Y; Tian Z; Yang Z; Gao D
    Pharmaceutics; 2022 Jul; 14(7):. PubMed ID: 35890416
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Potential "biopeptidal" therapeutics for severe respiratory syndrome coronaviruses: a review of antiviral peptides, viral mechanisms, and prospective needs.
    Ashaolu TJ; Nawaz A; Walayat N; Khalifa I
    Appl Microbiol Biotechnol; 2021 May; 105(9):3457-3470. PubMed ID: 33876282
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Understanding Cell Penetration of Cyclic Peptides.
    Dougherty PG; Sahni A; Pei D
    Chem Rev; 2019 Sep; 119(17):10241-10287. PubMed ID: 31083977
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Multimeric Amphipathic α-Helical Sequences for Rapid and Efficient Intracellular Protein Transport at Nanomolar Concentrations.
    Oh JH; Chong SE; Nam S; Hyun S; Choi S; Gye H; Jang S; Jang J; Hwang SW; Yu J; Lee Y
    Adv Sci (Weinh); 2018 Aug; 5(8):1800240. PubMed ID: 30128238
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Oligomer Formation Propensities of Dimeric Bundle Peptides Correlate with Cell Penetration Abilities.
    Hyun S; Lee Y; Jin SM; Cho J; Park J; Hyeon C; Kim KS; Lee Y; Yu J
    ACS Cent Sci; 2018 Jul; 4(7):885-893. PubMed ID: 30062117
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Construction of histidine-containing hydrocarbon stapled cell penetrating peptides for
    Hyun S; Choi Y; Lee HN; Lee C; Oh D; Lee DK; Lee C; Lee Y; Yu J
    Chem Sci; 2018 Apr; 9(15):3820-3827. PubMed ID: 29780514
    [TBL] [Abstract][Full Text] [Related]  

  • 78. The Antimicrobial and Antiviral Applications of Cell-Penetrating Peptides.
    Pärn K; Eriste E; Langel Ü
    Methods Mol Biol; 2015; 1324():223-45. PubMed ID: 26202273
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Cell-penetrating, dimeric α-helical peptides: nanomolar inhibitors of HIV-1 transcription.
    Jang S; Hyun S; Kim S; Lee S; Lee IS; Baba M; Lee Y; Yu J
    Angew Chem Int Ed Engl; 2014 Sep; 53(38):10086-9. PubMed ID: 25056130
    [TBL] [Abstract][Full Text] [Related]  

  • 80.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.