BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

620 related articles for article (PubMed ID: 25056711)

  • 1. Cyclic nucleotide phosphodiesterases: important signaling modulators and therapeutic targets.
    Ahmad F; Murata T; Shimizu K; Degerman E; Maurice D; Manganiello V
    Oral Dis; 2015 Jan; 21(1):e25-50. PubMed ID: 25056711
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibitors of cyclic nucleotide phosphodiesterase 3 and 5 as therapeutic agents in heart failure.
    Stehlik J; Movsesian MA
    Expert Opin Investig Drugs; 2006 Jul; 15(7):733-42. PubMed ID: 16787138
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanodomain Regulation of Cardiac Cyclic Nucleotide Signaling by Phosphodiesterases.
    Kokkonen K; Kass DA
    Annu Rev Pharmacol Toxicol; 2017 Jan; 57():455-479. PubMed ID: 27732797
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of the cyclic nucleotide phosphodiesterase subtypes involved in the regulation of the L-type Ca2+ current in rat ventricular myocytes.
    Verde I; Vandecasteele G; Lezoualc'h F; Fischmeister R
    Br J Pharmacol; 1999 May; 127(1):65-74. PubMed ID: 10369457
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calmodulin-dependent cyclic nucleotide phosphodiesterase (PDE1).
    Kakkar R; Raju RV; Sharma RK
    Cell Mol Life Sci; 1999 Jul; 55(8-9):1164-86. PubMed ID: 10442095
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cyclic nucleotide phosphodiesterases and human arterial smooth muscle cell proliferation.
    Rybalkin SD; Bornfeldt KE
    Thromb Haemost; 1999 Aug; 82(2):424-34. PubMed ID: 10605733
    [No Abstract]   [Full Text] [Related]  

  • 7. Phosphodiesterase inhibitors in airways disease.
    Fan Chung K
    Eur J Pharmacol; 2006 Mar; 533(1-3):110-7. PubMed ID: 16458289
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphodiesterase inhibitors.
    Boswell-Smith V; Spina D; Page CP
    Br J Pharmacol; 2006 Jan; 147 Suppl 1(Suppl 1):S252-7. PubMed ID: 16402111
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mammalian cyclic nucleotide phosphodiesterases: molecular mechanisms and physiological functions.
    Francis SH; Blount MA; Corbin JD
    Physiol Rev; 2011 Apr; 91(2):651-90. PubMed ID: 21527734
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphodiesterase function and endocrine cells: links to human disease and roles in tumor development and treatment.
    Levy I; Horvath A; Azevedo M; de Alexandre RB; Stratakis CA
    Curr Opin Pharmacol; 2011 Dec; 11(6):689-97. PubMed ID: 22047791
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Porcine detrusor cyclic nucleotide phosphodiesterase isoenzymes: characterization and functional effects of various phosphodiesterase inhibitors in vitro.
    Truss MC; Uckert S; Stief CG; Schulz-Knappe P; Hess R; Forssmann WG; Jonas U
    Urology; 1995 May; 45(5):893-901. PubMed ID: 7747383
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Implications of PDE4 structure on inhibitor selectivity across PDE families.
    Ke H
    Int J Impot Res; 2004 Jun; 16 Suppl 1():S24-7. PubMed ID: 15224132
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective blockade of phosphodiesterase types 2, 5 and 9 results in cyclic 3'5' guanosine monophosphate accumulation in retinal pigment epithelium cells.
    Diederen RM; La Heij EC; Markerink-van Ittersum M; Kijlstra A; Hendrikse F; de Vente J
    Br J Ophthalmol; 2007 Mar; 91(3):379-84. PubMed ID: 16943225
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancement of motility and acrosome reaction in human spermatozoa: differential activation by type-specific phosphodiesterase inhibitors.
    Fisch JD; Behr B; Conti M
    Hum Reprod; 1998 May; 13(5):1248-54. PubMed ID: 9647555
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibitory effects of flavonoids on phosphodiesterase isozymes from guinea pig and their structure-activity relationships.
    Ko WC; Shih CM; Lai YH; Chen JH; Huang HL
    Biochem Pharmacol; 2004 Nov; 68(10):2087-94. PubMed ID: 15476679
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cyclic AMP-specific phosphodiesterase inhibitor rolipram and RO-20-1724 promoted apoptosis in HL60 promyelocytic leukemic cells via cyclic AMP-independent mechanism.
    Zhu WH; Majluf-Cruz A; Omburo GA
    Life Sci; 1998; 63(4):265-74. PubMed ID: 9698035
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of phosphodiesterase isoforms 2, 5, and 9 in the regulation of NO-dependent and NO-independent cGMP production in the rat cervical spinal cord.
    de Vente J; Markerink-van Ittersum M; Vles JS
    J Chem Neuroanat; 2006 Jun; 31(4):275-303. PubMed ID: 16621445
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorescence resonance energy transfer-based analysis of cAMP dynamics in live neonatal rat cardiac myocytes reveals distinct functions of compartmentalized phosphodiesterases.
    Mongillo M; McSorley T; Evellin S; Sood A; Lissandron V; Terrin A; Huston E; Hannawacker A; Lohse MJ; Pozzan T; Houslay MD; Zaccolo M
    Circ Res; 2004 Jul; 95(1):67-75. PubMed ID: 15178638
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carboxyamidotriazole: a novel inhibitor of both cAMP-phosphodiesterases and cGMP-phosphodiesterases.
    Guo L; Luo L; Ju R; Chen C; Zhu L; Li J; Yu X; Ye C; Zhang D
    Eur J Pharmacol; 2015 Jan; 746():14-21. PubMed ID: 25446933
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Profiling of functional phosphodiesterase in mesangial cells using a CRE-SEAP-based reporting system.
    Zhu Y; Yao J; Meng Y; Kasai A; Hiramatsu N; Hayakawa K; Miida T; Takeda M; Okada M; Kitamura M
    Br J Pharmacol; 2006 Jul; 148(6):833-44. PubMed ID: 16751794
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 31.