These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 25056736)

  • 1. Compositional insights and valorization pathways for carbonaceous material deposited during bio-oil thermal treatment.
    Ochoa A; Aramburu B; Ibáñez M; Valle B; Bilbao J; Gayubo AG; Castaño P
    ChemSusChem; 2014 Sep; 7(9):2597-608. PubMed ID: 25056736
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Catalytic hydrothermal liquefaction of water hyacinth.
    Singh R; Balagurumurthy B; Prakash A; Bhaskar T
    Bioresour Technol; 2015 Feb; 178():157-165. PubMed ID: 25240515
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microwave-assisted catalytic pyrolysis of lignocellulosic biomass for production of phenolic-rich bio-oil.
    Mamaeva A; Tahmasebi A; Tian L; Yu J
    Bioresour Technol; 2016 Jul; 211():382-9. PubMed ID: 27030958
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal decomposition of lignocellulosic biomass in the presence of acid catalysts.
    Larabi C; al Maksoud W; Szeto KC; Roubaud A; Castelli P; Santini CC; Walter JJ
    Bioresour Technol; 2013 Nov; 148():255-60. PubMed ID: 24055967
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental process parameters optimization and in-depth product characterizations for teak sawdust pyrolysis.
    Gupta GK; Gupta PK; Mondal MK
    Waste Manag; 2019 Mar; 87():499-511. PubMed ID: 31109550
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Valorization of algal waste via pyrolysis in a fixed-bed reactor: Production and characterization of bio-oil and bio-char.
    Aboulkas A; Hammani H; El Achaby M; Bilal E; Barakat A; El Harfi K
    Bioresour Technol; 2017 Nov; 243():400-408. PubMed ID: 28688323
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative study of pyrolysis of algal biomass from natural lake blooms with lignocellulosic biomass.
    Maddi B; Viamajala S; Varanasi S
    Bioresour Technol; 2011 Dec; 102(23):11018-26. PubMed ID: 21983407
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects and mechanism of ball milling on torrefaction of pine sawdust.
    Gong C; Huang J; Feng C; Wang G; Tabil L; Wang D
    Bioresour Technol; 2016 Aug; 214():242-247. PubMed ID: 27136611
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conversion of lignocellulosic biomass to green fuel oil over sodium based catalysts.
    Nguyen TS; Zabeti M; Lefferts L; Brem G; Seshan K
    Bioresour Technol; 2013 Aug; 142():353-60. PubMed ID: 23747447
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Renewable jet-fuel range hydrocarbons production from co-pyrolysis of lignin and soapstock with the activated carbon catalyst.
    Duan D; Zhang Y; Lei H; Villota E; Ruan R
    Waste Manag; 2019 Apr; 88():1-9. PubMed ID: 31079620
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct hydro-liquefaction of sawdust in petroleum ether and comprehensive bio-oil products analysis.
    Liu D; Song L; Wu P; Liu Y; Li Q; Yan Z
    Bioresour Technol; 2014 Mar; 155():152-60. PubMed ID: 24445192
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selectively improving the bio-oil quality by catalytic fast pyrolysis of heavy-metal-polluted biomass: take copper (Cu) as an example.
    Liu WJ; Tian K; Jiang H; Zhang XS; Ding HS; Yu HQ
    Environ Sci Technol; 2012 Jul; 46(14):7849-56. PubMed ID: 22708628
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of the lignocellulosic material on fast pyrolysis yields and product quality.
    Carrier M; Joubert JE; Danje S; Hugo T; Görgens J; Knoetze JH
    Bioresour Technol; 2013 Dec; 150():129-38. PubMed ID: 24161551
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Value added liquid products from waste biomass pyrolysis using pretreatments.
    Das O; Sarmah AK
    Sci Total Environ; 2015 Dec; 538():145-51. PubMed ID: 26298257
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Top chemical opportunities from carbohydrate biomass: a chemist's view of the Biorefinery.
    Dusselier M; Mascal M; Sels BF
    Top Curr Chem; 2014; 353():1-40. PubMed ID: 24842622
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aromatic chemicals by iron-catalyzed hydrotreatment of lignin pyrolysis vapor.
    Olcese RN; Lardier G; Bettahar M; Ghanbaja J; Fontana S; Carré V; Aubriet F; Petitjean D; Dufour A
    ChemSusChem; 2013 Aug; 6(8):1490-9. PubMed ID: 23784799
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Value addition to rice straw through pyrolysis in hydrogen and nitrogen environments.
    Balagurumurthy B; Srivastava V; Vinit ; Kumar J; Biswas B; Singh R; Gupta P; Kumar KL; Singh R; Bhaskar T
    Bioresour Technol; 2015; 188():273-9. PubMed ID: 25637279
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancing biochar yield by co-pyrolysis of bio-oil with biomass: impacts of potassium hydroxide addition and air pretreatment prior to co-pyrolysis.
    Veksha A; Zaman W; Layzell DB; Hill JM
    Bioresour Technol; 2014 Nov; 171():88-94. PubMed ID: 25189513
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Renewable chemical commodity feedstocks from integrated catalytic processing of pyrolysis oils.
    Vispute TP; Zhang H; Sanna A; Xiao R; Huber GW
    Science; 2010 Nov; 330(6008):1222-7. PubMed ID: 21109668
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigations into pyrolytic behaviour of spent citronella waste: Slow and flash pyrolysis study.
    Kaur R; Kumar A; Biswas B; Krishna BB; Bhaskar T
    Bioresour Technol; 2022 Dec; 366():128202. PubMed ID: 36326550
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.