These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 2505679)

  • 21. The effect of aging resolved chromatophores of Rhodospirillum rubrum on the capacity to reconstitute the energy-linked transhydrogenation.
    Guber S; Konings AW; Guillory RJ
    Biochim Biophys Acta; 1972 Jan; 255(1):161-70. PubMed ID: 4400928
    [No Abstract]   [Full Text] [Related]  

  • 22. Two different NADH dehydrogenases in respiration of Rhodospirillum rubrum chromatophores.
    Nisimoto Y; Kakuno T; Yamashita J; Horio T
    J Biochem; 1973 Dec; 74(6):1205-16. PubMed ID: 4149985
    [No Abstract]   [Full Text] [Related]  

  • 23. The function of ubiquinone-10 both in the electron transport system and in the energy conservation system of chromatophores from Rhodospirillum rubrum.
    Yamamoto N; Hatakeyama H; Nishikawa K; Horio T
    J Biochem; 1970 Apr; 67(4):587-98. PubMed ID: 5453049
    [No Abstract]   [Full Text] [Related]  

  • 24. A study on the membrane potential and pH gradient in chromatophores and intact cells of photosynthetic bacteria.
    Barsky EL; Bonch-Osmolovskaya EA; Ostroumov SA; Samuilov VD; Skulachev VP
    Biochim Biophys Acta; 1975 May; 387(2):388-95. PubMed ID: 236031
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Steady-state measurements of delta pH and delta psi in Rhodospirillum rubrum chromatophores by two different methods. Comparison with phosphorylation potential.
    Cirillo VP; Gromet-Elhanan Z
    Biochim Biophys Acta; 1981 Jul; 636(2):244-53. PubMed ID: 6793067
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The photoreduction of nicotinamide-adenine dinucleotide by chromatophore fractions from Rhodospirillum rubrum.
    Govindjee R; Sybesma C
    Biophys J; 1972 Jul; 12(7):897-908. PubMed ID: 4338746
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Energy-linked reactions in photosynthetic bacteria. IX. Pi-PPi exchange in Rhodospirillum rubrum.
    Keister DL; Raveed NJ
    J Biol Chem; 1974 Oct; 249(20):6454-8. PubMed ID: 4371026
    [No Abstract]   [Full Text] [Related]  

  • 28. [Interaction of redox mediators with chromatophores of the photosynthetic bacterium Rhodospirillum rubrum].
    Sled' VD; Verkhovskiĭ MI; Shinkarev VP; Mulkidzhanian AIa; Grishanova NP
    Mol Biol (Mosk); 1983; 17(1):33-41. PubMed ID: 6408397
    [No Abstract]   [Full Text] [Related]  

  • 29. [Cyclic electron transfer and membrane potential generation in chromatophores on non-sulfur bacteria Rhodospirillum rubrum].
    Remennikov VG; Samuilov VD
    Biokhimiia; 1980 Jul; 45(7):1298-304. PubMed ID: 6783130
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Light-induced pH changes and changes in absorbance of pH indicators in Rhodospirillum rubrum chromatophores.
    Nishi N; Sakata-Sogawa K; Soe G; Yamashita J
    J Biochem; 1977 Nov; 82(5):1267-79. PubMed ID: 22540
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Involvement of an essential arginyl residue in the coupling activity of Rhodospirillum rubrum chromatophores.
    Vallejos RH; Lescano WI; Lucero HA
    Arch Biochem Biophys; 1978 Oct; 190(2):578-84. PubMed ID: 102254
    [No Abstract]   [Full Text] [Related]  

  • 32. Role of ubiquinone-10 in electron transport system of chromatophores from Rhodospirillum rubrum.
    Higuti T; Erabi T; Kakuno T; Horio T
    J Biochem; 1975 Jul; 78(1):51-6. PubMed ID: 172493
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The influence of energy-transfer inhibitors on proton permeability and photophosphorylation in normal and preilluminated Rhodospirillum rubrum chromatophores.
    Slooten L; Branders C
    Biochim Biophys Acta; 1979 Jul; 547(1):79-90. PubMed ID: 37903
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparison of the electrochemical proton gradient and phosphate potential maintained by Rhodospirillum rubrum chromatophores in the steady state.
    Leiser M; Gromet-Elhanan Z
    Arch Biochem Biophys; 1977 Jan; 178(1):79-88. PubMed ID: 402116
    [No Abstract]   [Full Text] [Related]  

  • 35. Coupling of ATP hydrolysis to phosphate uptake in Rhodospirillum rubrum chromatophores under the influence of Ca2+ and Mg2+.
    Montero-Lomelí M; Martins OB; Dreyfus G
    J Biol Chem; 1989 Dec; 264(35):21014-7. PubMed ID: 2512287
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Polyphosphate biosynthesis in Rhodospirillum rubrum chromatophores].
    Shadi A; Mansurova SE; Tsydendambaev VD; Kulaev IS
    Mikrobiologiia; 1976; 45(2):333-6. PubMed ID: 180387
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Inhibitors of photophosphorylation and photoreduction by chromatophores from Rhodospirillum rubrum.
    Gromet-Elhanan Z
    Arch Biochem Biophys; 1969 Apr; 131(1):299-305. PubMed ID: 4305607
    [No Abstract]   [Full Text] [Related]  

  • 38. Light-induced electron transfer reactions and adenosine triphosphate formation by Rhodospirillum rubrum chromatophores.
    Zaugg WS; Vernon LP; Helmer G
    Arch Biochem Biophys; 1967 Mar; 119(1):560-71. PubMed ID: 6052446
    [No Abstract]   [Full Text] [Related]  

  • 39. The dibromothymoquinone effect on membrane potential generation in Rhodospirillum rubrum chromatophores.
    Oleskin AV; Samuilov VD
    Membr Biochem; 1983; 5(1):77-95. PubMed ID: 6316108
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Relation of cyclic and noncyclic electron transport in Rhodospirillum rubrum chromatophores. I. Experimental study of the kinetic characteristics of dark reduction of P870 with different donor concentrations in the medium].
    Pyt'eva NF; Chamorovskiĭ SK; Rubin AB
    Biofizika; 1978; 23(1):48-52. PubMed ID: 414786
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.