BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 25056811)

  • 1. Succinate production from CO₂-grown microalgal biomass as carbon source using engineered Corynebacterium glutamicum through consolidated bioprocessing.
    Lee J; Sim SJ; Bott M; Um Y; Oh MK; Woo HM
    Sci Rep; 2014 Jul; 4():5819. PubMed ID: 25056811
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering of Corynebacterium glutamicum for growth and succinate production from levoglucosan, a pyrolytic sugar substrate.
    Kim EM; Um Y; Bott M; Woo HM
    FEMS Microbiol Lett; 2015 Oct; 362(19):. PubMed ID: 26363018
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct production of cadaverine from soluble starch using Corynebacterium glutamicum coexpressing alpha-amylase and lysine decarboxylase.
    Tateno T; Okada Y; Tsuchidate T; Tanaka T; Fukuda H; Kondo A
    Appl Microbiol Biotechnol; 2009 Feb; 82(1):115-21. PubMed ID: 18989633
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering Corynebacterium glutamicum for efficient production of succinic acid from corn stover pretreated by concentrated-alkali under steam-assistant conditions.
    Li K; Li C; Zhao XQ; Liu CG; Bai FW
    Bioresour Technol; 2023 Jun; 378():128991. PubMed ID: 37003455
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct production of L-lysine from raw corn starch by Corynebacterium glutamicum secreting Streptococcus bovis alpha-amylase using cspB promoter and signal sequence.
    Tateno T; Fukuda H; Kondo A
    Appl Microbiol Biotechnol; 2007 Dec; 77(3):533-41. PubMed ID: 17891388
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Corynebacterium glutamicum CgynfM encodes a dicarboxylate transporter applicable to succinate production.
    Fukui K; Nanatani K; Nakayama M; Hara Y; Tokura M; Abe K
    J Biosci Bioeng; 2019 Apr; 127(4):465-471. PubMed ID: 30392965
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glycerol as a substrate for aerobic succinate production in minimal medium with Corynebacterium glutamicum.
    Litsanov B; Brocker M; Bott M
    Microb Biotechnol; 2013 Mar; 6(2):189-95. PubMed ID: 22513227
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering of acetate recycling and citrate synthase to improve aerobic succinate production in Corynebacterium glutamicum.
    Zhu N; Xia H; Wang Z; Zhao X; Chen T
    PLoS One; 2013; 8(4):e60659. PubMed ID: 23593275
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient aerobic succinate production from glucose in minimal medium with Corynebacterium glutamicum.
    Litsanov B; Kabus A; Brocker M; Bott M
    Microb Biotechnol; 2012 Jan; 5(1):116-28. PubMed ID: 22018023
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Production of L-Lysine from starch by Corynebacterium glutamicum displaying alpha-amylase on its cell surface.
    Tateno T; Fukuda H; Kondo A
    Appl Microbiol Biotechnol; 2007 Apr; 74(6):1213-20. PubMed ID: 17216452
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microaerobic growth-decoupled production of α-ketoglutarate and succinate from xylose in a one-pot process using Corynebacterium glutamicum.
    Tenhaef N; Kappelmann J; Eich A; Weiske M; Brieß L; Brüsseler C; Marienhagen J; Wiechert W; Noack S
    Biotechnol J; 2021 Sep; 16(9):e2100043. PubMed ID: 34089621
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aerobic production of succinate from arabinose by metabolically engineered Corynebacterium glutamicum.
    Chen T; Zhu N; Xia H
    Bioresour Technol; 2014 Jan; 151():411-4. PubMed ID: 24169202
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modular pathway engineering of Corynebacterium glutamicum to improve xylose utilization and succinate production.
    Jo S; Yoon J; Lee SM; Um Y; Han SO; Woo HM
    J Biotechnol; 2017 Sep; 258():69-78. PubMed ID: 28153765
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-step production of polyhydroxybutyrate from starch by using α-amylase cell-surface displaying system of Corynebacterium glutamicum.
    Song Y; Matsumoto K; Tanaka T; Kondo A; Taguchi S
    J Biosci Bioeng; 2013 Jan; 115(1):12-4. PubMed ID: 22959444
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Utilization of soluble starch by a recombinant Corynebacterium glutamicum strain: growth and lysine production.
    Seibold G; Auchter M; Berens S; Kalinowski J; Eikmanns BJ
    J Biotechnol; 2006 Jul; 124(2):381-91. PubMed ID: 16488498
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Succinic acid production from corn cob hydrolysates by genetically engineered Corynebacterium glutamicum.
    Wang C; Zhang H; Cai H; Zhou Z; Chen Y; Chen Y; Ouyang P
    Appl Biochem Biotechnol; 2014 Jan; 172(1):340-50. PubMed ID: 24078255
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent advances in the metabolic engineering of Corynebacterium glutamicum for the production of lactate and succinate from renewable resources.
    Tsuge Y; Hasunuma T; Kondo A
    J Ind Microbiol Biotechnol; 2015 Mar; 42(3):375-89. PubMed ID: 25424693
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbon flux analysis by 13C nuclear magnetic resonance to determine the effect of CO2 on anaerobic succinate production by Corynebacterium glutamicum.
    Radoš D; Turner DL; Fonseca LL; Carvalho AL; Blombach B; Eikmanns BJ; Neves AR; Santos H
    Appl Environ Microbiol; 2014 May; 80(10):3015-24. PubMed ID: 24610842
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An efficient succinic acid production process in a metabolically engineered Corynebacterium glutamicum strain.
    Okino S; Noburyu R; Suda M; Jojima T; Inui M; Yukawa H
    Appl Microbiol Biotechnol; 2008 Dec; 81(3):459-64. PubMed ID: 18777022
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved succinate production in Corynebacterium glutamicum by engineering glyoxylate pathway and succinate export system.
    Zhu N; Xia H; Yang J; Zhao X; Chen T
    Biotechnol Lett; 2014 Mar; 36(3):553-60. PubMed ID: 24129953
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.