These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
322 related articles for article (PubMed ID: 25056957)
1. Progranulin transcripts with short and long 5' untranslated regions (UTRs) are differentially expressed via posttranscriptional and translational repression. Capell A; Fellerer K; Haass C J Biol Chem; 2014 Sep; 289(37):25879-89. PubMed ID: 25056957 [TBL] [Abstract][Full Text] [Related]
2. Genetic variants in progranulin upstream open reading frames increase downstream protein expression. Frydas A; Cacace R; van der Zee J; Van Broeckhoven C; Wauters E Neurobiol Aging; 2022 Feb; 110():113-121. PubMed ID: 34620513 [TBL] [Abstract][Full Text] [Related]
3. Brain progranulin expression in GRN-associated frontotemporal lobar degeneration. Chen-Plotkin AS; Xiao J; Geser F; Martinez-Lage M; Grossman M; Unger T; Wood EM; Van Deerlin VM; Trojanowski JQ; Lee VM Acta Neuropathol; 2010 Jan; 119(1):111-22. PubMed ID: 19649643 [TBL] [Abstract][Full Text] [Related]
4. Progranulin and TDP-43: mechanistic links and future directions. Kumar-Singh S J Mol Neurosci; 2011 Nov; 45(3):561-73. PubMed ID: 21863317 [TBL] [Abstract][Full Text] [Related]
5. TDP-43 and FUS RNA-binding proteins bind distinct sets of cytoplasmic messenger RNAs and differently regulate their post-transcriptional fate in motoneuron-like cells. Colombrita C; Onesto E; Megiorni F; Pizzuti A; Baralle FE; Buratti E; Silani V; Ratti A J Biol Chem; 2012 May; 287(19):15635-47. PubMed ID: 22427648 [TBL] [Abstract][Full Text] [Related]
6. A mutation in the 5'-UTR of GRN gene associated with frontotemporal lobar degeneration: phenotypic variability and possible pathogenetic mechanisms. Puoti G; Lerza MC; Ferretti MG; Bugiani O; Tagliavini F; Rossi G J Alzheimers Dis; 2014; 42(3):939-47. PubMed ID: 25024321 [TBL] [Abstract][Full Text] [Related]
7. TDP-43 accelerates deadenylation of target mRNAs by recruiting Caf1 deadenylase. Fukushima M; Hosoda N; Chifu K; Hoshino SI FEBS Lett; 2019 Feb; 593(3):277-287. PubMed ID: 30520513 [TBL] [Abstract][Full Text] [Related]
8. A novel GRN mutation (GRN c.708+6_+9delTGAG) in frontotemporal lobar degeneration with TDP-43-positive inclusions: clinicopathologic report of 6 cases. Bit-Ivan EN; Suh E; Shim HS; Weintraub S; Hyman BT; Arnold SE; McCarty-Wood E; Van Deerlin VM; Schneider JA; Trojanowski JQ; Frosch MP; Baker MC; Rademakers R; Mesulam M; Bigio EH J Neuropathol Exp Neurol; 2014 May; 73(5):467-73. PubMed ID: 24709683 [TBL] [Abstract][Full Text] [Related]
9. Rescue of progranulin deficiency associated with frontotemporal lobar degeneration by alkalizing reagents and inhibition of vacuolar ATPase. Capell A; Liebscher S; Fellerer K; Brouwers N; Willem M; Lammich S; Gijselinck I; Bittner T; Carlson AM; Sasse F; Kunze B; Steinmetz H; Jansen R; Dormann D; Sleegers K; Cruts M; Herms J; Van Broeckhoven C; Haass C J Neurosci; 2011 Feb; 31(5):1885-94. PubMed ID: 21289198 [TBL] [Abstract][Full Text] [Related]
10. A morphometric study of the spatial patterns of TDP-43 immunoreactive neuronal inclusions in frontotemporal lobar degeneration (FTLD) with progranulin (GRN) mutation. Armstrong RA; Cairns NJ Histol Histopathol; 2011 Feb; 26(2):185-90. PubMed ID: 21154232 [TBL] [Abstract][Full Text] [Related]
11. Suppression of Progranulin Expression Leads to Formation of Intranuclear TDP-43 Inclusions In Vitro: A Cell Model of Frontotemporal Lobar Degeneration. Zhu J; Wang N; Li X; Zheng X; Zhao J; Xia H; Mao Q J Neuropathol Exp Neurol; 2019 Dec; 78(12):1124-1129. PubMed ID: 31626287 [TBL] [Abstract][Full Text] [Related]
12. Common pathobiochemical hallmarks of progranulin-associated frontotemporal lobar degeneration and neuronal ceroid lipofuscinosis. Götzl JK; Mori K; Damme M; Fellerer K; Tahirovic S; Kleinberger G; Janssens J; van der Zee J; Lang CM; Kremmer E; Martin JJ; Engelborghs S; Kretzschmar HA; Arzberger T; Van Broeckhoven C; Haass C; Capell A Acta Neuropathol; 2014; 127(6):845-60. PubMed ID: 24619111 [TBL] [Abstract][Full Text] [Related]
13. Multiple transcripts from a 3'-UTR reporter vary in sensitivity to nonsense-mediated mRNA decay in Saccharomyces cerevisiae. Zaborske JM; Zeitler B; Culbertson MR PLoS One; 2013; 8(11):e80981. PubMed ID: 24260526 [TBL] [Abstract][Full Text] [Related]
14. TMEM106B, the risk gene for frontotemporal dementia, is regulated by the microRNA-132/212 cluster and affects progranulin pathways. Chen-Plotkin AS; Unger TL; Gallagher MD; Bill E; Kwong LK; Volpicelli-Daley L; Busch JI; Akle S; Grossman M; Van Deerlin V; Trojanowski JQ; Lee VM J Neurosci; 2012 Aug; 32(33):11213-27. PubMed ID: 22895706 [TBL] [Abstract][Full Text] [Related]
15. TARDBP 3'-UTR variant in autopsy-confirmed frontotemporal lobar degeneration with TDP-43 proteinopathy. Gitcho MA; Bigio EH; Mishra M; Johnson N; Weintraub S; Mesulam M; Rademakers R; Chakraverty S; Cruchaga C; Morris JC; Goate AM; Cairns NJ Acta Neuropathol; 2009 Nov; 118(5):633-45. PubMed ID: 19618195 [TBL] [Abstract][Full Text] [Related]
16. Stress granules in neurodegeneration--lessons learnt from TAR DNA binding protein of 43 kDa and fused in sarcoma. Bentmann E; Haass C; Dormann D FEBS J; 2013 Sep; 280(18):4348-70. PubMed ID: 23587065 [TBL] [Abstract][Full Text] [Related]
17. Expression of TMEM106B, the frontotemporal lobar degeneration-associated protein, in normal and diseased human brain. Busch JI; Martinez-Lage M; Ashbridge E; Grossman M; Van Deerlin VM; Hu F; Lee VM; Trojanowski JQ; Chen-Plotkin AS Acta Neuropathol Commun; 2013 Jul; 1():36. PubMed ID: 24252750 [TBL] [Abstract][Full Text] [Related]
18. Frontotemporal lobar degeneration: Pathogenesis, pathology and pathways to phenotype. Mann DMA; Snowden JS Brain Pathol; 2017 Nov; 27(6):723-736. PubMed ID: 28100023 [TBL] [Abstract][Full Text] [Related]
19. Potential genetic modifiers of disease risk and age at onset in patients with frontotemporal lobar degeneration and GRN mutations: a genome-wide association study. Pottier C; Zhou X; Perkerson RB; Baker M; Jenkins GD; Serie DJ; Ghidoni R; Benussi L; Binetti G; López de Munain A; Zulaica M; Moreno F; Le Ber I; Pasquier F; Hannequin D; Sánchez-Valle R; Antonell A; Lladó A; Parsons TM; Finch NA; Finger EC; Lippa CF; Huey ED; Neumann M; Heutink P; Synofzik M; Wilke C; Rissman RA; Slawek J; Sitek E; Johannsen P; Nielsen JE; Ren Y; van Blitterswijk M; DeJesus-Hernandez M; Christopher E; Murray ME; Bieniek KF; Evers BM; Ferrari C; Rollinson S; Richardson A; Scarpini E; Fumagalli GG; Padovani A; Hardy J; Momeni P; Ferrari R; Frangipane F; Maletta R; Anfossi M; Gallo M; Petrucelli L; Suh E; Lopez OL; Wong TH; van Rooij JGJ; Seelaar H; Mead S; Caselli RJ; Reiman EM; Noel Sabbagh M; Kjolby M; Nykjaer A; Karydas AM; Boxer AL; Grinberg LT; Grafman J; Spina S; Oblak A; Mesulam MM; Weintraub S; Geula C; Hodges JR; Piguet O; Brooks WS; Irwin DJ; Trojanowski JQ; Lee EB; Josephs KA; Parisi JE; Ertekin-Taner N; Knopman DS; Nacmias B; Piaceri I; Bagnoli S; Sorbi S; Gearing M; Glass J; Beach TG; Black SE; Masellis M; Rogaeva E; Vonsattel JP; Honig LS; Kofler J; Bruni AC; Snowden J; Mann D; Pickering-Brown S; Diehl-Schmid J; Winkelmann J; Galimberti D; Graff C; Öijerstedt L; Troakes C; Al-Sarraj S; Cruchaga C; Cairns NJ; Rohrer JD; Halliday GM; Kwok JB; van Swieten JC; White CL; Ghetti B; Murell JR; Mackenzie IRA; Hsiung GR; Borroni B; Rossi G; Tagliavini F; Wszolek ZK; Petersen RC; Bigio EH; Grossman M; Van Deerlin VM; Seeley WW; Miller BL; Graff-Radford NR; Boeve BF; Dickson DW; Biernacka JM; Rademakers R Lancet Neurol; 2018 Jun; 17(6):548-558. PubMed ID: 29724592 [TBL] [Abstract][Full Text] [Related]
20. Upstream open reading frames regulate translation of the long isoform of SLAMF1 mRNA that encodes costimulatory receptor CD150. Putlyaeva LV; Schwartz AM; Korneev KV; Covic M; Uroshlev LA; Makeev VY; Dmitriev SE; Kuprash DV Biochemistry (Mosc); 2014 Dec; 79(12):1405-11. PubMed ID: 25716736 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]