These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 25057111)

  • 1. GWAS and drug targets.
    Cao C; Moult J
    BMC Genomics; 2014; 15 Suppl 4(Suppl 4):S5. PubMed ID: 25057111
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Leveraging multiple gene networks to prioritize GWAS candidate genes via network representation learning.
    Wu M; Zeng W; Liu W; Lv H; Chen T; Jiang R
    Methods; 2018 Aug; 145():41-50. PubMed ID: 29874547
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advancing the use of genome-wide association studies for drug repurposing.
    Reay WR; Cairns MJ
    Nat Rev Genet; 2021 Oct; 22(10):658-671. PubMed ID: 34302145
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Systems-level analysis of genome-wide association data.
    Farber CR
    G3 (Bethesda); 2013 Jan; 3(1):119-29. PubMed ID: 23316444
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Network analysis of genome-wide association studies for drug target prioritisation.
    Barrio-Hernandez I; Beltrao P
    Curr Opin Chem Biol; 2022 Dec; 71():102206. PubMed ID: 36087372
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparative study of disease genes and drug targets in the human protein interactome.
    Sun J; Zhu K; Zheng W; Xu H
    BMC Bioinformatics; 2015; 16 Suppl 5(Suppl 5):S1. PubMed ID: 25861037
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pathway analysis of GWAS loci identifies novel drug targets and repurposing opportunities.
    Jhamb D; Magid-Slav M; Hurle MR; Agarwal P
    Drug Discov Today; 2019 Jun; 24(6):1232-1236. PubMed ID: 30935985
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel putative drugs and key initiating genes for neurodegenerative disease determined using network-based genetic integrative analysis.
    Mortezaei Z; Cazier JB; Mehrabi AA; Cheng C; Masoudi-Nejad A
    J Cell Biochem; 2019 Apr; 120(4):5459-5471. PubMed ID: 30302804
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gene, pathway and network frameworks to identify epistatic interactions of single nucleotide polymorphisms derived from GWAS data.
    Liu Y; Maxwell S; Feng T; Zhu X; Elston RC; Koyutürk M; Chance MR
    BMC Syst Biol; 2012; 6 Suppl 3(Suppl 3):S15. PubMed ID: 23281810
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pinpointing miRNA and genes enrichment over trait-relevant tissue network in Genome-Wide Association Studies.
    Li B; Dong J; Yu J; Fan Y; Shang L; Zhou X; Bai Y
    BMC Med Genomics; 2020 Dec; 13(Suppl 11):191. PubMed ID: 33371893
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prioritizing candidate disease genes by network-based boosting of genome-wide association data.
    Lee I; Blom UM; Wang PI; Shim JE; Marcotte EM
    Genome Res; 2011 Jul; 21(7):1109-21. PubMed ID: 21536720
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome-wide association data classification and SNPs selection using two-stage quality-based Random Forests.
    Nguyen TT; Huang J; Wu Q; Nguyen T; Li M
    BMC Genomics; 2015; 16 Suppl 2(Suppl 2):S5. PubMed ID: 25708662
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Repositioning drugs by targeting network modules: a Parkinson's disease case study.
    Yue Z; Arora I; Zhang EY; Laufer V; Bridges SL; Chen JY
    BMC Bioinformatics; 2017 Dec; 18(Suppl 14):532. PubMed ID: 29297292
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Complex systems analysis of bladder cancer susceptibility reveals a role for decarboxylase activity in two genome-wide association studies.
    Cheng S; Andrew AS; Andrews PC; Moore JH
    BioData Min; 2016; 9():40. PubMed ID: 27999618
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrated genome-wide analysis of expression quantitative trait loci aids interpretation of genomic association studies.
    Joehanes R; Zhang X; Huan T; Yao C; Ying SX; Nguyen QT; Demirkale CY; Feolo ML; Sharopova NR; Sturcke A; Schäffer AA; Heard-Costa N; Chen H; Liu PC; Wang R; Woodhouse KA; Tanriverdi K; Freedman JE; Raghavachari N; Dupuis J; Johnson AD; O'Donnell CJ; Levy D; Munson PJ
    Genome Biol; 2017 Jan; 18(1):16. PubMed ID: 28122634
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Downstream targets of GWAS-detected genes for breast, lung, and prostate and colon cancer converge to G1/S transition pathway.
    Gorlova OY; Demidenko EI; Amos CI; Gorlov IP
    Hum Mol Genet; 2017 Apr; 26(8):1465-1471. PubMed ID: 28334950
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein-Protein interactions uncover candidate 'core genes' within omnigenic disease networks.
    Ratnakumar A; Weinhold N; Mar JC; Riaz N
    PLoS Genet; 2020 Jul; 16(7):e1008903. PubMed ID: 32678846
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Leveraging genetic data to investigate molecular targets and drug repurposing candidates for treating alcohol use disorder and hepatotoxicity.
    Gray JC; Murphy M; Leggio L
    Drug Alcohol Depend; 2020 Sep; 214():108155. PubMed ID: 32652377
    [TBL] [Abstract][Full Text] [Related]  

  • 19. i-GSEA4GWAS: a web server for identification of pathways/gene sets associated with traits by applying an improved gene set enrichment analysis to genome-wide association study.
    Zhang K; Cui S; Chang S; Zhang L; Wang J
    Nucleic Acids Res; 2010 Jul; 38(Web Server issue):W90-5. PubMed ID: 20435672
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new methodology to associate SNPs with human diseases according to their pathway related context.
    Bakir-Gungor B; Sezerman OU
    PLoS One; 2011; 6(10):e26277. PubMed ID: 22046267
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.