BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 25057777)

  • 1. Mathematical modeling of efficient protocols to control glioma growth.
    Branco JR; Ferreira JA; de Oliveira P
    Math Biosci; 2014 Sep; 255():83-90. PubMed ID: 25057777
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Brain glioma growth model using reaction-diffusion equation with viscous stress tensor on brain MR images.
    Yuan J; Liu L
    Magn Reson Imaging; 2016 Feb; 34(2):114-9. PubMed ID: 26518060
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mathematical modeling of glioma therapy using oncolytic viruses.
    Camara BI; Mokrani H; Afenya EK
    Math Biosci Eng; 2013 Jun; 10(3):565-78. PubMed ID: 23906136
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On assessing quality of therapy in non-linear distributed mathematical models for brain tumor growth dynamics.
    Bratus AS; Fimmel E; Kovalenko SY
    Math Biosci; 2014 Feb; 248():88-96. PubMed ID: 24384228
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mathematically modeling the biological properties of gliomas: A review.
    Martirosyan NL; Rutter EM; Ramey WL; Kostelich EJ; Kuang Y; Preul MC
    Math Biosci Eng; 2015 Aug; 12(4):879-905. PubMed ID: 25974347
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mathematical modeling of glioma on MRI.
    Mandonnet E
    Rev Neurol (Paris); 2011 Oct; 167(10):715-20. PubMed ID: 21890155
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In-depth analysis and evaluation of diffusive glioma models.
    Roniotis A; Sakkalis V; Karatzanis I; Zervakis ME; Marias K
    IEEE Trans Inf Technol Biomed; 2012 May; 16(3):299-307. PubMed ID: 22287245
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The evolution of mathematical modeling of glioma proliferation and invasion.
    Harpold HL; Alvord EC; Swanson KR
    J Neuropathol Exp Neurol; 2007 Jan; 66(1):1-9. PubMed ID: 17204931
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Virtual and real brain tumors: using mathematical modeling to quantify glioma growth and invasion.
    Swanson KR; Bridge C; Murray JD; Alvord EC
    J Neurol Sci; 2003 Dec; 216(1):1-10. PubMed ID: 14607296
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A recursive anisotropic fast marching approach to reaction diffusion equation: application to tumor growth modeling.
    Konukoglu E; Sermesant M; Clatz O; Peyrat JM; Delingette H; Ayache N
    Inf Process Med Imaging; 2007; 20():687-99. PubMed ID: 17633740
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An inverse problem formulation for parameter estimation of a reaction-diffusion model of low grade gliomas.
    Gholami A; Mang A; Biros G
    J Math Biol; 2016 Jan; 72(1-2):409-33. PubMed ID: 25963601
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulating PDGF-Driven Glioma Growth and Invasion in an Anatomically Accurate Brain Domain.
    Massey SC; Rockne RC; Hawkins-Daarud A; Gallaher J; Anderson ARA; Canoll P; Swanson KR
    Bull Math Biol; 2018 May; 80(5):1292-1309. PubMed ID: 28842831
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mathematical model of brain tumour with glia-neuron interactions and chemotherapy treatment.
    Iarosz KC; Borges FS; Batista AM; Baptista MS; Siqueira RA; Viana RL; Lopes SR
    J Theor Biol; 2015 Mar; 368():113-21. PubMed ID: 25596516
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mathematical modelling of glioma growth: the use of Diffusion Tensor Imaging (DTI) data to predict the anisotropic pathways of cancer invasion.
    Painter KJ; Hillen T
    J Theor Biol; 2013 Apr; 323():25-39. PubMed ID: 23376578
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biophysical modeling of brain tumor progression: from unconditionally stable explicit time integration to an inverse problem with parabolic PDE constraints for model calibration.
    Mang A; Toma A; Schuetz TA; Becker S; Eckey T; Mohr C; Petersen D; Buzug TM
    Med Phys; 2012 Jul; 39(7):4444-59. PubMed ID: 22830777
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hybrid mathematical model of glioma progression.
    Tanaka ML; Debinski W; Puri IK
    Cell Prolif; 2009 Oct; 42(5):637-46. PubMed ID: 19624684
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Mathematical modeling of low-grade glioma].
    Mandonnet E
    Bull Acad Natl Med; 2011 Jan; 195(1):23-34; discussion 34-6. PubMed ID: 22039701
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimating intratumoral heterogeneity from spatiotemporal data.
    Rutter EM; Banks HT; Flores KB
    J Math Biol; 2018 Dec; 77(6-7):1999-2022. PubMed ID: 29737395
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New innovations and developments for glioma treatment.
    Croteau D; Mikkelsen T; Rempel SA; Bogler O; Rosenblum M
    Clin Neurosurg; 2001; 48():60-81. PubMed ID: 11692657
    [No Abstract]   [Full Text] [Related]  

  • 20. Mathematical modelling of microtumour infiltration based on in vitro experiments.
    Luján E; Guerra LN; Soba A; Visacovsky N; Gandía D; Calvo JC; Suárez C
    Integr Biol (Camb); 2016 Aug; 8(8):879-85. PubMed ID: 27466056
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.