These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 25057812)

  • 1. An experimental and computational study to understand the lithium storage mechanism in molybdenum disulfide.
    Sen UK; Johari P; Basu S; Nayak C; Mitra S
    Nanoscale; 2014 Sep; 6(17):10243-54. PubMed ID: 25057812
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intercalation anode material for lithium ion battery based on molybdenum dioxide.
    Sen UK; Shaligram A; Mitra S
    ACS Appl Mater Interfaces; 2014 Aug; 6(16):14311-9. PubMed ID: 25062365
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of lithium storage in MoS2 and the feasibility of using Li2S/Mo nanocomposites as cathode materials for lithium-sulfur batteries.
    Fang X; Guo X; Mao Y; Hua C; Shen L; Hu Y; Wang Z; Wu F; Chen L
    Chem Asian J; 2012 May; 7(5):1013-7. PubMed ID: 22374889
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Atomic resolution study of reversible conversion reaction in metal oxide electrodes for lithium-ion battery.
    Luo L; Wu J; Xu J; Dravid VP
    ACS Nano; 2014 Nov; 8(11):11560-6. PubMed ID: 25337887
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Brannerite-Type Vanadium-Molybdenum Oxide LiVMoO₆ as a Promising Anode Material for Lithium-Ion Batteries with High Capacity and Rate Capability.
    Chen N; Wang C; Hu F; Bie X; Wei Y; Chen G; Du F
    ACS Appl Mater Interfaces; 2015 Jul; 7(29):16117-23. PubMed ID: 26154565
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In Situ Transmission Electron Microscopy Observation of the Lithiation-Delithiation Conversion Behavior of CuO/Graphene Anode.
    Su Q; Yao L; Zhang J; Du G; Xu B
    ACS Appl Mater Interfaces; 2015 Oct; 7(41):23062-8. PubMed ID: 26437926
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Probing the Additional Capacity and Reaction Mechanism of the RuO2 Anode in Lithium Rechargeable Batteries.
    Kim Y; Muhammad S; Kim H; Cho YH; Kim H; Kim JM; Yoon WS
    ChemSusChem; 2015 Jul; 8(14):2378-84. PubMed ID: 26130378
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conversion reaction mechanisms in lithium ion batteries: study of the binary metal fluoride electrodes.
    Wang F; Robert R; Chernova NA; Pereira N; Omenya F; Badway F; Hua X; Ruotolo M; Zhang R; Wu L; Volkov V; Su D; Key B; Whittingham MS; Grey CP; Amatucci GG; Zhu Y; Graetz J
    J Am Chem Soc; 2011 Nov; 133(46):18828-36. PubMed ID: 21894971
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MnO Conversion in Li-Ion Batteries: In Situ Studies and the Role of Mesostructuring.
    Butala MM; Danks KR; Lumley MA; Zhou S; Melot BC; Seshadri R
    ACS Appl Mater Interfaces; 2016 Mar; 8(10):6496-503. PubMed ID: 26881741
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct Studies on the Lithium-Storage Mechanism of Molybdenum Disulfide.
    Su Q; Wang S; Feng M; Du G; Xu B
    Sci Rep; 2017 Aug; 7(1):7275. PubMed ID: 28779168
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The capacity fading mechanism and improvement of cycling stability in MoS2-based anode materials for lithium-ion batteries.
    Shu H; Li F; Hu C; Liang P; Cao D; Chen X
    Nanoscale; 2016 Feb; 8(5):2918-26. PubMed ID: 26780964
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lithium insertion in nanostructured TiO(2)(B) architectures.
    Dylla AG; Henkelman G; Stevenson KJ
    Acc Chem Res; 2013 May; 46(5):1104-12. PubMed ID: 23425042
    [TBL] [Abstract][Full Text] [Related]  

  • 13. LiFe(MoO4)2 as a novel anode material for lithium-ion batteries.
    Chen N; Yao Y; Wang D; Wei Y; Bie X; Wang C; Chen G; Du F
    ACS Appl Mater Interfaces; 2014 Jul; 6(13):10661-6. PubMed ID: 24905851
    [TBL] [Abstract][Full Text] [Related]  

  • 14. L-cysteine-assisted synthesis of layered MoS₂/graphene composites with excellent electrochemical performances for lithium ion batteries.
    Chang K; Chen W
    ACS Nano; 2011 Jun; 5(6):4720-8. PubMed ID: 21574610
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metal hydrides for lithium-ion batteries.
    Oumellal Y; Rougier A; Nazri GA; Tarascon JM; Aymard L
    Nat Mater; 2008 Nov; 7(11):916-21. PubMed ID: 18849978
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lithium-ion storage in molybdenum phosphides with different crystal structures.
    Jin X; Tian R; Wu A; Xiao Y; Dong X; Hu F; Huang H
    Dalton Trans; 2020 Feb; 49(7):2225-2233. PubMed ID: 32003386
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent advances in first principles computational research of cathode materials for lithium-ion batteries.
    Meng YS; Arroyo-de Dompablo ME
    Acc Chem Res; 2013 May; 46(5):1171-80. PubMed ID: 22489876
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Li2S Film Formation on Lithium Anode Surface of Li-S batteries.
    Liu Z; Bertolini S; Balbuena PB; Mukherjee PP
    ACS Appl Mater Interfaces; 2016 Feb; 8(7):4700-8. PubMed ID: 26836249
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrasmall Fe₃O₄ nanoparticle/MoS₂ nanosheet composites with superior performances for lithium ion batteries.
    Chen Y; Song B; Tang X; Lu L; Xue J
    Small; 2014 Apr; 10(8):1536-43. PubMed ID: 24376114
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrahigh Capacity Due to Multi-Electron Conversion Reaction in Reduced Graphene Oxide-Wrapped MoO2 Porous Nanobelts.
    Tang W; Peng CX; Nai CT; Su J; Liu YP; Reddy MV; Lin M; Loh KP
    Small; 2015 May; 11(20):2446-53. PubMed ID: 25620728
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.