BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 25057967)

  • 1. In vitro sensing of Cu(+) through a green fluorescence rise of pyranine.
    Saha T; Sengupta A; Hazra P; Talukdar P
    Photochem Photobiol Sci; 2014 Oct; 13(10):1427-33. PubMed ID: 25057967
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of trace amount of Cu2+ with a multi-responsive colorimetric and reversible chemosensor.
    Mi YS; Cao Z; Chen YT; Xie QF; Xu YY; Luo YF; Shi JJ; Xiang JN
    Analyst; 2013 Sep; 138(18):5274-80. PubMed ID: 23865087
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A water soluble fluorescent BODIPY dye with azathia-crown ether functionality for mercury chemosensing in environmental media.
    Isaad J; El Achari A
    Analyst; 2013 Jul; 138(13):3809-19. PubMed ID: 23702799
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Copper(II) and iron(II) ion sensing with semiconducting polymer dots.
    Chan YH; Jin Y; Wu C; Chiu DT
    Chem Commun (Camb); 2011 Mar; 47(10):2820-2. PubMed ID: 21240410
    [TBL] [Abstract][Full Text] [Related]  

  • 5. H(+)-Assisted fluorescent differentiation of Cu(+) and Cu(2+): effect of Al(3+)-induced acidity on chemical sensing and generation of two novel and independent logic gating pathways.
    Ha Y; Murale DP; Yun C; Manjare ST; Kim H; Kwak J; Lee YS; Churchill DG
    Chem Commun (Camb); 2015 Apr; 51(29):6357-60. PubMed ID: 25763413
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-contrast fluorescence sensing of aqueous Cu(I) with triarylpyrazoline probes: dissecting the roles of ligand donor strength and excited state proton transfer.
    Morgan MT; Bagchi P; Fahrni CJ
    Dalton Trans; 2013 Mar; 42(9):3240-8. PubMed ID: 23169532
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A highly selective fluorescent probe for Cu2+ based on rhodamine B derivative.
    Xu J; Hou Y; Ma Q; Wu X; Feng S; Zhang J; Shen Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Apr; 124():416-22. PubMed ID: 24508880
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly sensitive and selective colorimetric and off-on fluorescent chemosensor for Cu2+ in aqueous solution and living cells.
    Zhao Y; Zhang XB; Han ZX; Qiao L; Li CY; Jian LX; Shen GL; Yu RQ
    Anal Chem; 2009 Aug; 81(16):7022-30. PubMed ID: 19634898
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A pyrene-based highly selective turn-on fluorescent sensor for copper(II) ion and its application in live cell imaging.
    Wu SP; Huang ZM; Liu SR; Chung PK
    J Fluoresc; 2012 Jan; 22(1):253-9. PubMed ID: 21870075
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrochemical and spectroscopic study of pyranine fluorescent probe: role of intermediates in pyranine oxidation.
    Velásquez G; Ureta-Zañartu MS; López-Alarcón C; Aspée A
    J Phys Chem B; 2011 May; 115(20):6661-7. PubMed ID: 21539332
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A water-soluble ribosyl-based fluorescent sensor for Hg2+ and Cu2+ ions.
    Chen YB; Wang YJ; Lin YJ; Hu CH; Chen SJ; Chir JL; Wu AT
    Carbohydr Res; 2010 May; 345(7):956-9. PubMed ID: 20193947
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Label-free G-quadruplex-specific fluorescent probe for sensitive detection of copper(II) ion.
    Zhang L; Zhu J; Ai J; Zhou Z; Jia X; Wang E
    Biosens Bioelectron; 2013 Jan; 39(1):268-73. PubMed ID: 22921949
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A facile approach for cupric ion detection in aqueous media using polyethyleneimine/PMMA core-shell fluorescent nanoparticles.
    Chen J; Zeng F; Wu S; Su J; Zhao J; Tong Z
    Nanotechnology; 2009 Sep; 20(36):365502. PubMed ID: 19687556
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A rhodamine-cyclen conjugate as chromogenic and fluorescent chemosensor for copper ion in aqueous media.
    Wang M; Zhang D; Li M; Fan M; Ye Y; Zhao YF
    J Fluoresc; 2013 May; 23(3):417-23. PubMed ID: 23321932
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective chemosensor for copper ions based on fluorescence quenching of a Schiff-base fluorophore.
    Espada-Bellido E; Galindo-Riaño MD; García-Vargas M; Narayanaswamy R
    Appl Spectrosc; 2010 Jul; 64(7):727-32. PubMed ID: 20615285
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical Cu2+ probe bearing an 8-hydroxyquinoline subunit: high sensitivity and large fluorescence enhancement.
    Zhu H; Fan J; Lu J; Hu M; Cao J; Wang J; Li H; Liu X; Peng X
    Talanta; 2012 May; 93():55-61. PubMed ID: 22483876
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A highly selective turn-on fluorescent sensor for Cu(II) based on an NSe2 chelating moiety and its application in living cell imaging.
    Chou CY; Liu SR; Wu SP
    Analyst; 2013 Jun; 138(11):3264-70. PubMed ID: 23612188
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A stilbene-based fluoroionophore for copper ion sensing in both reduced and oxidized environments.
    Zhu MQ; Gu Z; Zhang R; Xiang JN; Nie S
    Talanta; 2010 Apr; 81(1-2):678-83. PubMed ID: 20188981
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rhodamine-based ratiometric fluorescence sensing for the detection of mercury(II) in aqueous solution.
    Liu H; Yu P; Du D; He C; Qiu B; Chen X; Chen G
    Talanta; 2010 Apr; 81(1-2):433-7. PubMed ID: 20188942
    [TBL] [Abstract][Full Text] [Related]  

  • 20. pH determination by pyranine: medium-related artifacts and their correction.
    Avnir Y; Barenholz Y
    Anal Biochem; 2005 Dec; 347(1):34-41. PubMed ID: 16289011
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.