BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

693 related articles for article (PubMed ID: 25058116)

  • 1. A highly abundant bacteriophage discovered in the unknown sequences of human faecal metagenomes.
    Dutilh BE; Cassman N; McNair K; Sanchez SE; Silva GG; Boling L; Barr JJ; Speth DR; Seguritan V; Aziz RK; Felts B; Dinsdale EA; Mokili JL; Edwards RA
    Nat Commun; 2014 Jul; 5():4498. PubMed ID: 25058116
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolution of BACON Domain Tandem Repeats in crAssphage and Novel Gut Bacteriophage Lineages.
    Jonge PA; Meijenfeldt FABV; Rooijen LEV; Brouns SJJ; Dutilh BE
    Viruses; 2019 Nov; 11(12):. PubMed ID: 31766550
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microbial Diversity and Phage-Host Interactions in the Georgian Coastal Area of the Black Sea Revealed by Whole Genome Metagenomic Sequencing.
    Jaiani E; Kusradze I; Kokashvili T; Geliashvili N; Janelidze N; Kotorashvili A; Kotaria N; Guchmanidze A; Tediashvili M; Prangishvili D
    Mar Drugs; 2020 Nov; 18(11):. PubMed ID: 33202695
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative analysis of CRISPR cassettes from the human gut metagenomic contigs.
    Gogleva AA; Gelfand MS; Artamonova II
    BMC Genomics; 2014 Mar; 15(1):202. PubMed ID: 24628983
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phage-bacteria relationships and CRISPR elements revealed by a metagenomic survey of the rumen microbiome.
    Berg Miller ME; Yeoman CJ; Chia N; Tringe SG; Angly FE; Edwards RA; Flint HJ; Lamed R; Bayer EA; White BA
    Environ Microbiol; 2012 Jan; 14(1):207-27. PubMed ID: 22004549
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CrAss-Like Phages: From Discovery in Human Fecal Metagenome to Application as a Microbial Source Tracking Marker.
    Remesh AT; Viswanathan R
    Food Environ Virol; 2024 Jun; 16(2):121-135. PubMed ID: 38413544
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thousands of previously unknown phages discovered in whole-community human gut metagenomes.
    Benler S; Yutin N; Antipov D; Rayko M; Shmakov S; Gussow AB; Pevzner P; Koonin EV
    Microbiome; 2021 Mar; 9(1):78. PubMed ID: 33781338
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A diversity-generating retroelement encoded by a globally ubiquitous Bacteroides phage.
    Benler S; Cobián-Güemes AG; McNair K; Hung SH; Levi K; Edwards R; Rohwer F
    Microbiome; 2018 Oct; 6(1):191. PubMed ID: 30352623
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation of bacteriophage host strains of Bacteroides species suitable for tracking sources of animal faecal pollution in water.
    Gómez-Doñate M; Payán A; Cortés I; Blanch AR; Lucena F; Jofre J; Muniesa M
    Environ Microbiol; 2011 Jun; 13(6):1622-31. PubMed ID: 21443742
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discovery of an expansive bacteriophage family that includes the most abundant viruses from the human gut.
    Yutin N; Makarova KS; Gussow AB; Krupovic M; Segall A; Edwards RA; Koonin EV
    Nat Microbiol; 2018 Jan; 3(1):38-46. PubMed ID: 29133882
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Resolution of habitat-associated ecogenomic signatures in bacteriophage genomes and application to microbial source tracking.
    Ogilvie LA; Nzakizwanayo J; Guppy FM; Dedi C; Diston D; Taylor H; Ebdon J; Jones BV
    ISME J; 2018 Apr; 12(4):942-958. PubMed ID: 29259289
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolutionary Study of the Crassphage Virus at Gene Level.
    Rossi A; Treu L; Toppo S; Zschach H; Campanaro S; Dutilh BE
    Viruses; 2020 Sep; 12(9):. PubMed ID: 32957679
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Viruses in the faecal microbiota of monozygotic twins and their mothers.
    Reyes A; Haynes M; Hanson N; Angly FE; Heath AC; Rohwer F; Gordon JI
    Nature; 2010 Jul; 466(7304):334-8. PubMed ID: 20631792
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational approaches to predict bacteriophage-host relationships.
    Edwards RA; McNair K; Faust K; Raes J; Dutilh BE
    FEMS Microbiol Rev; 2016 Mar; 40(2):258-72. PubMed ID: 26657537
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A bioinformatic analysis of ribonucleotide reductase genes in phage genomes and metagenomes.
    Dwivedi B; Xue B; Lundin D; Edwards RA; Breitbart M
    BMC Evol Biol; 2013 Feb; 13():33. PubMed ID: 23391036
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fishing for phages in metagenomes: what do we catch, what do we miss?
    Benler S; Koonin EV
    Curr Opin Virol; 2021 Aug; 49():142-150. PubMed ID: 34139668
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CrAssphage and its bacterial host in cat feces.
    Li Y; Gordon E; Shean RC; Idle A; Deng X; Greninger AL; Delwart E
    Sci Rep; 2021 Jan; 11(1):815. PubMed ID: 33436756
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assembly and Annotation of Viral Metagenomes from Short-Read Sequencing Data.
    Mangalea MR; Keift K; Duerkop BA; Anantharaman K
    Methods Mol Biol; 2023; 2649():317-337. PubMed ID: 37258871
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mining, analyzing, and integrating viral signals from metagenomic data.
    Zheng T; Li J; Ni Y; Kang K; Misiakou MA; Imamovic L; Chow BKC; Rode AA; Bytzer P; Sommer M; Panagiotou G
    Microbiome; 2019 Mar; 7(1):42. PubMed ID: 30890181
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimizing protocols for extraction of bacteriophages prior to metagenomic analyses of phage communities in the human gut.
    Castro-Mejía JL; Muhammed MK; Kot W; Neve H; Franz CM; Hansen LH; Vogensen FK; Nielsen DS
    Microbiome; 2015 Nov; 3():64. PubMed ID: 26577924
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 35.