BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 25058340)

  • 1. Taurine chloramine-induced inactivation of cofilin protein through methionine oxidation.
    Luo S; Uehara H; Shacter E
    Free Radic Biol Med; 2014 Oct; 75():84-94. PubMed ID: 25058340
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxidant-induced apoptosis is mediated by oxidation of the actin-regulatory protein cofilin.
    Klamt F; Zdanov S; Levine RL; Pariser A; Zhang Y; Zhang B; Yu LR; Veenstra TD; Shacter E
    Nat Cell Biol; 2009 Oct; 11(10):1241-6. PubMed ID: 19734890
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxidation of cofilin mediates T cell hyporesponsiveness under oxidative stress conditions.
    Klemke M; Wabnitz GH; Funke F; Funk B; Kirchgessner H; Samstag Y
    Immunity; 2008 Sep; 29(3):404-13. PubMed ID: 18771940
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mapping the phosphoinositide-binding site on chick cofilin explains how PIP2 regulates the cofilin-actin interaction.
    Gorbatyuk VY; Nosworthy NJ; Robson SA; Bains NP; Maciejewski MW; Dos Remedios CG; King GF
    Mol Cell; 2006 Nov; 24(4):511-22. PubMed ID: 17114056
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteome alteration in oxidative stress-sensitive methionine sulfoxide reductase-silenced HEK293 cells.
    Ugarte N; Ladouce R; Radjei S; Gareil M; Friguet B; Petropoulos I
    Free Radic Biol Med; 2013 Dec; 65():1023-1036. PubMed ID: 23988788
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Uncoupling actin filament fragmentation by cofilin from increased subunit turnover.
    Pope BJ; Gonsior SM; Yeoh S; McGough A; Weeds AG
    J Mol Biol; 2000 May; 298(4):649-61. PubMed ID: 10788327
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Methionine oxidation as a major cause of the functional impairment of oxidized actin.
    Dalle-Donne I; Rossi R; Giustarini D; Gagliano N; Di Simplicio P; Colombo R; Milzani A
    Free Radic Biol Med; 2002 May; 32(9):927-37. PubMed ID: 11978495
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Screening of novel dominant negative mutant actins using glycine targeted scanning identifies G146V actin that cooperatively inhibits cofilin binding.
    Noguchi TQ; Toya R; Ueno H; Tokuraku K; Uyeda TQ
    Biochem Biophys Res Commun; 2010 Jun; 396(4):1006-11. PubMed ID: 20471369
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cooperative and non-cooperative conformational changes of F-actin induced by cofilin.
    Aihara T; Oda T
    Biochem Biophys Res Commun; 2013 May; 435(2):229-33. PubMed ID: 23665019
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mapping the cofilin binding site on yeast G-actin by chemical cross-linking.
    Grintsevich EE; Benchaar SA; Warshaviak D; Boontheung P; Halgand F; Whitelegge JP; Faull KF; Loo RR; Sept D; Loo JA; Reisler E
    J Mol Biol; 2008 Mar; 377(2):395-409. PubMed ID: 18258262
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A reducing milieu renders cofilin insensitive to phosphatidylinositol 4,5-bisphosphate (PIP2) inhibition.
    Schulte B; John I; Simon B; Brockmann C; Oelmeier SA; Jahraus B; Kirchgessner H; Riplinger S; Carlomagno T; Wabnitz GH; Samstag Y
    J Biol Chem; 2013 Oct; 288(41):29430-9. PubMed ID: 24003227
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-affinity and cooperative binding of oxidized calmodulin by methionine sulfoxide reductase.
    Xiong Y; Chen B; Smallwood HS; Urbauer RJ; Markille LM; Galeva N; Williams TD; Squier TC
    Biochemistry; 2006 Dec; 45(49):14642-54. PubMed ID: 17144657
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of methionine sulfoxide reductase B1 (SelR) gene silencing on peroxynitrite-induced F-actin disruption in human lens epithelial cells.
    Jia Y; Zhou J; Liu H; Huang K
    Biochem Biophys Res Commun; 2014 Jan; 443(3):876-81. PubMed ID: 24342607
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of cysteine, methionine and tryptophan residues of actin oxidized in vivo during oxidative stress.
    Fedorova M; Kuleva N; Hoffmann R
    J Proteome Res; 2010 Mar; 9(3):1598-609. PubMed ID: 20063901
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid nucleotide exchange renders Asp-11 mutant actins resistant to depolymerizing activity of cofilin, leading to dominant toxicity in vivo.
    Umeki N; Nakajima J; Noguchi TQ; Tokuraku K; Nagasaki A; Ito K; Hirose K; Uyeda TQ
    J Biol Chem; 2013 Jan; 288(3):1739-49. PubMed ID: 23212920
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mapping the interaction of cofilin with subdomain 2 on actin.
    Benchaar SA; Xie Y; Phillips M; Loo RR; Galkin VE; Orlova A; Thevis M; Muhlrad A; Almo SC; Loo JA; Egelman EH; Reisler E
    Biochemistry; 2007 Jan; 46(1):225-33. PubMed ID: 17198393
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mapping the G-actin binding surface of cofilin using synchrotron protein footprinting.
    Guan JQ; Vorobiev S; Almo SC; Chance MR
    Biochemistry; 2002 May; 41(18):5765-75. PubMed ID: 11980480
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calorimetry and mass spectrometry study of oxidized calmodulin interaction with target and differential repair by methionine sulfoxide reductases.
    Tsvetkov PO; Ezraty B; Mitchell JK; Devred F; Peyrot V; Derrick PJ; Barras F; Makarov AA; Lafitte D
    Biochimie; 2005 May; 87(5):473-80. PubMed ID: 15820754
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two activities of cofilin, severing and accelerating directional depolymerization of actin filaments, are affected differentially by mutations around the actin-binding helix.
    Moriyama K; Yahara I
    EMBO J; 1999 Dec; 18(23):6752-61. PubMed ID: 10581248
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Site-directed mutagenesis of the phosphorylation site of cofilin: its role in cofilin-actin interaction and cytoplasmic localization.
    Nagaoka R; Abe H; Obinata T
    Cell Motil Cytoskeleton; 1996; 35(3):200-9. PubMed ID: 8913641
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.