These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 25058405)

  • 21. Evidence for dynamic and multiple roles for huntingtin in Ciona intestinalis.
    Idris MM; Thorndyke MC; Brown ER
    Invert Neurosci; 2013 Dec; 13(2):151-65. PubMed ID: 23797324
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Delineating metamorphic pathways in the ascidian Ciona intestinalis.
    Nakayama-Ishimura A; Chambon JP; Horie T; Satoh N; Sasakura Y
    Dev Biol; 2009 Feb; 326(2):357-67. PubMed ID: 19100250
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The TRP channel PKD2 is involved in sensing the mechanical stimulus of adhesion for initiating metamorphosis in the chordate Ciona.
    Sakamoto A; Hozumi A; Shiraishi A; Satake H; Horie T; Sasakura Y
    Dev Growth Differ; 2022 Sep; 64(7):395-408. PubMed ID: 36053743
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Time course for tail regression during metamorphosis of the ascidian Ciona intestinalis.
    Matsunobu S; Sasakura Y
    Dev Biol; 2015 Sep; 405(1):71-81. PubMed ID: 26102482
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An ancient role for nitric oxide in regulating the animal pelagobenthic life cycle: evidence from a marine sponge.
    Ueda N; Richards GS; Degnan BM; Kranz A; Adamska M; Croll RP; Degnan SM
    Sci Rep; 2016 Nov; 6():37546. PubMed ID: 27874071
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mitogen-Activated Protein Kinase Phosphatases Affect UV-B-Induced Stomatal Closure via Controlling NO in Guard Cells.
    Li FC; Wang J; Wu MM; Fan CM; Li X; He JM
    Plant Physiol; 2017 Jan; 173(1):760-770. PubMed ID: 27837091
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A genome-wide survey of the genes for planar polarity signaling or convergent extension-related genes in Ciona intestinalis and phylogenetic comparisons of evolutionary conserved signaling components.
    Hotta K; Takahashi H; Ueno N; Gojobori T
    Gene; 2003 Oct; 317(1-2):165-85. PubMed ID: 14604806
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ciona intestinalis Hox gene cluster: Its dispersed structure and residual colinear expression in development.
    Ikuta T; Yoshida N; Satoh N; Saiga H
    Proc Natl Acad Sci U S A; 2004 Oct; 101(42):15118-23. PubMed ID: 15469921
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Post-translational regulation of mitogen-activated protein kinase phosphatase-2 (MKP-2) by ERK.
    Peng DJ; Zhou JY; Wu GS
    Cell Cycle; 2010 Dec; 9(23):4650-5. PubMed ID: 21084841
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparative genomics identifies a cis-regulatory module that activates transcription in specific subsets of neurons in Ciona intestinalis larvae.
    Yoshida R; Horie T; Tsuda M; Kusakabe TG
    Dev Growth Differ; 2007 Oct; 49(8):657-67. PubMed ID: 17711474
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The genetic covariance between life cycle stages separated by metamorphosis.
    Aguirre JD; Blows MW; Marshall DJ
    Proc Biol Sci; 2014 Aug; 281(1788):20141091. PubMed ID: 24966319
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A conserved role for the MEK signalling pathway in neural tissue specification and posteriorisation in the invertebrate chordate, the ascidian Ciona intestinalis.
    Hudson C; Darras S; Caillol D; Yasuo H; Lemaire P
    Development; 2003 Jan; 130(1):147-59. PubMed ID: 12441299
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Follicle-Stimulating Hormone (FSH)-dependent Regulation of Extracellular Regulated Kinase (ERK) Phosphorylation by the Mitogen-activated Protein (MAP) Kinase Phosphatase MKP3.
    Donaubauer EM; Law NC; Hunzicker-Dunn ME
    J Biol Chem; 2016 Sep; 291(37):19701-12. PubMed ID: 27422819
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Role of mitogen-activated protein kinases in peptidoglycan-induced expression of inducible nitric oxide synthase and nitric oxide in mouse peritoneal macrophages: extracellular signal-related kinase, a negative regulator.
    Bhatt KH; Sodhi A; Chakraborty R
    Clin Vaccine Immunol; 2011 Jun; 18(6):994-1001. PubMed ID: 21450974
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Antagonistic Interactions between Extracellular Signal-Regulated Kinase Mitogen-Activated Protein Kinase and Retinoic Acid Receptor Signaling in Colorectal Cancer Cells.
    Imajo M; Kondoh K; Yamamoto T; Nakayama K; Nakajima-Koyama M; Nishida E
    Mol Cell Biol; 2017 Aug; 37(15):. PubMed ID: 28483913
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Negative and positive regulation of MAPK phosphatase 3 controls platelet-derived growth factor-induced Erk activation.
    Jurek A; Amagasaki K; Gembarska A; Heldin CH; Lennartsson J
    J Biol Chem; 2009 Feb; 284(7):4626-34. PubMed ID: 19106095
    [TBL] [Abstract][Full Text] [Related]  

  • 37. c-Jun N-terminal kinase binding domain-dependent phosphorylation of mitogen-activated protein kinase kinase 4 and mitogen-activated protein kinase kinase 7 and balancing cross-talk between c-Jun N-terminal kinase and extracellular signal-regulated kinase pathways in cortical neurons.
    Repici M; Mare L; Colombo A; Ploia C; Sclip A; Bonny C; Nicod P; Salmona M; Borsello T
    Neuroscience; 2009 Mar; 159(1):94-103. PubMed ID: 19135136
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Novel function of MKP-5/DUSP10, a phosphatase of stress-activated kinases, on ERK-dependent gene expression, and upregulation of its gene expression in colon carcinomas.
    Nomura M; Shiiba K; Katagiri C; Kasugai I; Masuda K; Sato I; Sato M; Kakugawa Y; Nomura E; Hayashi K; Nakamura Y; Nagata T; Otsuka T; Katakura R; Yamashita Y; Sato M; Tanuma N; Shima H
    Oncol Rep; 2012 Sep; 28(3):931-6. PubMed ID: 22711061
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cannabinoid receptor type 2 activation induces a microglial anti-inflammatory phenotype and reduces migration via MKP induction and ERK dephosphorylation.
    Romero-Sandoval EA; Horvath R; Landry RP; DeLeo JA
    Mol Pain; 2009 May; 5():25. PubMed ID: 19476641
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Scaffold Role of DUSP22 in ASK1-MKK7-JNK Signaling Pathway.
    Ju A; Cho YC; Kim BR; Park SG; Kim JH; Kim K; Lee J; Park BC; Cho S
    PLoS One; 2016; 11(10):e0164259. PubMed ID: 27711255
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.