BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 25058858)

  • 1. Split and flow: reconfigurable capillary connection for digital microfluidic devices.
    Lapierre F; Harnois M; Coffinier Y; Boukherroub R; Thomy V
    Lab Chip; 2014 Sep; 14(18):3589-93. PubMed ID: 25058858
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Superhydrophobic surfaces as an on-chip microfluidic toolkit for total droplet control.
    Draper MC; Crick CR; Orlickaite V; Turek VA; Parkin IP; Edel JB
    Anal Chem; 2013 Jun; 85(11):5405-10. PubMed ID: 23627493
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flexible microfluidic cloth-based analytical devices using a low-cost wax patterning technique.
    Nilghaz A; Wicaksono DH; Gustiono D; Abdul Majid FA; Supriyanto E; Abdul Kadir MR
    Lab Chip; 2012 Jan; 12(1):209-18. PubMed ID: 22089026
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel combination of hydrophilic/hydrophobic surface for large wettability difference and its application to liquid manipulation.
    Kobayashi T; Shimizu K; Kaizuma Y; Konishi S
    Lab Chip; 2011 Feb; 11(4):639-44. PubMed ID: 21127789
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Paper-based microfluidic devices by plasma treatment.
    Li X; Tian J; Nguyen T; Shen W
    Anal Chem; 2008 Dec; 80(23):9131-4. PubMed ID: 19551982
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On-demand control of microfluidic flow via capillary-tuned solenoid microvalve suction.
    Zhang Q; Zhang P; Su Y; Mou C; Zhou T; Yang M; Xu J; Ma B
    Lab Chip; 2014 Dec; 14(24):4599-603. PubMed ID: 25231434
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Macro-to-micro interfaces for microfluidic devices.
    Fredrickson CK; Fan ZH
    Lab Chip; 2004 Dec; 4(6):526-33. PubMed ID: 15570361
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Principles of transverse flow fractionation of microparticles in superhydrophobic channels.
    Asmolov ES; Dubov AL; Nizkaya TV; Kuehne AJ; Vinogradova OI
    Lab Chip; 2015 Jul; 15(13):2835-41. PubMed ID: 26016651
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interfacial microfluidic transport on micropatterned superhydrophobic textile.
    Xing S; Jiang J; Pan T
    Lab Chip; 2013 May; 13(10):1937-47. PubMed ID: 23536189
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plug-n-play microfluidic systems from flexible assembly of glass-based flow-control modules.
    Meng ZJ; Wang W; Liang X; Zheng WC; Deng NN; Xie R; Ju XJ; Liu Z; Chu LY
    Lab Chip; 2015 Apr; 15(8):1869-78. PubMed ID: 25711675
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Benchtop fabrication of three-dimensional reconfigurable microfluidic devices from paper-polymer composite.
    Han YL; Wang W; Hu J; Huang G; Wang S; Lee WG; Lu TJ; Xu F
    Lab Chip; 2013 Dec; 13(24):4745-9. PubMed ID: 24172608
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Easy route to superhydrophobic copper-based wire-guided droplet microfluidic systems.
    Mumm F; van Helvoort AT; Sikorski P
    ACS Nano; 2009 Sep; 3(9):2647-52. PubMed ID: 19681579
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On-demand microfluidic droplet manipulation using hydrophobic ferrofluid as a continuous-phase.
    Zhang K; Liang Q; Ai X; Hu P; Wang Y; Luo G
    Lab Chip; 2011 Apr; 11(7):1271-5. PubMed ID: 21327251
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adhesive-based bonding technique for PDMS microfluidic devices.
    Thompson CS; Abate AR
    Lab Chip; 2013 Feb; 13(4):632-5. PubMed ID: 23282717
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analytical detection techniques for droplet microfluidics--a review.
    Zhu Y; Fang Q
    Anal Chim Acta; 2013 Jul; 787():24-35. PubMed ID: 23830418
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantifying analytes in paper-based microfluidic devices without using external electronic readers.
    Lewis GG; DiTucci MJ; Phillips ST
    Angew Chem Int Ed Engl; 2012 Dec; 51(51):12707-10. PubMed ID: 23144005
    [No Abstract]   [Full Text] [Related]  

  • 17. On the flow topology inside droplets moving in rectangular microchannels.
    Ma S; Sherwood JM; Huck WT; Balabani S
    Lab Chip; 2014 Sep; 14(18):3611-20. PubMed ID: 25072660
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface-directed capillary system; theory, experiments and applications.
    Bouaidat S; Hansen O; Bruus H; Berendsen C; Bau-Madsen NK; Thomsen P; Wolff A; Jonsmann J
    Lab Chip; 2005 Aug; 5(8):827-36. PubMed ID: 16027933
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermoset polyester droplet-based microfluidic devices for high frequency generation.
    Kim JY; deMello AJ; Chang SI; Hong J; O'Hare D
    Lab Chip; 2011 Dec; 11(23):4108-12. PubMed ID: 21979428
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrophilic strips for preventing air bubble formation in a microfluidic chamber.
    Choi M; Na Y; Kim SJ
    Electrophoresis; 2015 Dec; 36(23):2896-901. PubMed ID: 26382942
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.