These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 25058858)

  • 41. Pump-less static microfluidic device for analysis of chemotaxis of Pseudomonas aeruginosa using wetting and capillary action.
    Jeong HH; Lee SH; Lee CS
    Biosens Bioelectron; 2013 Sep; 47():278-84. PubMed ID: 23584390
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Droplet sensing by measuring the capacitance between coplanar electrodes in a digital microfluidic system.
    Bhattacharjee B; Najjaran H
    Lab Chip; 2012 Nov; 12(21):4416-23. PubMed ID: 22930258
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Programmable active droplet generation enabled by integrated pneumatic micropumps.
    Zeng Y; Shin M; Wang T
    Lab Chip; 2013 Jan; 13(2):267-73. PubMed ID: 23160148
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Three-dimensional, paper-based microfluidic devices containing internal timers for running time-based diagnostic assays.
    Phillips ST; Thom NK
    Methods Mol Biol; 2013; 949():185-96. PubMed ID: 23329444
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Sequential operation droplet array: an automated microfluidic platform for picoliter-scale liquid handling, analysis, and screening.
    Zhu Y; Zhang YX; Cai LF; Fang Q
    Anal Chem; 2013 Jul; 85(14):6723-31. PubMed ID: 23763273
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Droplet-based microfluidics.
    Sharma S; Srisa-Art M; Scott S; Asthana A; Cass A
    Methods Mol Biol; 2013; 949():207-30. PubMed ID: 23329446
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Digital microfluidics-enabled single-molecule detection by printing and sealing single magnetic beads in femtoliter droplets.
    Witters D; Knez K; Ceyssens F; Puers R; Lammertyn J
    Lab Chip; 2013 Jun; 13(11):2047-54. PubMed ID: 23609603
    [TBL] [Abstract][Full Text] [Related]  

  • 48. In situ generation of pH gradients in microfluidic devices for biofabrication of freestanding, semi-permeable chitosan membranes.
    Luo X; Berlin DL; Betz J; Payne GF; Bentley WE; Rubloff GW
    Lab Chip; 2010 Jan; 10(1):59-65. PubMed ID: 20024051
    [TBL] [Abstract][Full Text] [Related]  

  • 49. One-step patterning of hollow microstructures in paper by laser cutting to create microfluidic analytical devices.
    Nie J; Liang Y; Zhang Y; Le S; Li D; Zhang S
    Analyst; 2013 Jan; 138(2):671-6. PubMed ID: 23183392
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A programmable and reconfigurable microfluidic chip.
    Renaudot R; Agache V; Fouillet Y; Laffite G; Bisceglia E; Jalabert L; Kumemura M; Collard D; Fujita H
    Lab Chip; 2013 Dec; 13(23):4517-24. PubMed ID: 24154859
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Enhanced fluorescence detection using liquid-liquid extraction in a microfluidic droplet system.
    Chen YY; Chen ZM; Wang HY
    Lab Chip; 2012 Nov; 12(21):4569-75. PubMed ID: 22964763
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Interfacial tension controlled W/O and O/W 2-phase flows in microchannel.
    Shui L; van den Berg A; Eijkel JC
    Lab Chip; 2009 Mar; 9(6):795-801. PubMed ID: 19255661
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Thread as a versatile material for low-cost microfluidic diagnostics.
    Li X; Tian J; Shen W
    ACS Appl Mater Interfaces; 2010 Jan; 2(1):1-6. PubMed ID: 20356211
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Capillarics: pre-programmed, self-powered microfluidic circuits built from capillary elements.
    Safavieh R; Juncker D
    Lab Chip; 2013 Nov; 13(21):4180-9. PubMed ID: 23978958
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Highly productive droplet formation by anisotropic elongation of a thread flow in a microchannel.
    Saeki D; Sugiura S; Kanamori T; Sato S; Mukataka S; Ichikawa S
    Langmuir; 2008 Dec; 24(23):13809-13. PubMed ID: 18986185
    [TBL] [Abstract][Full Text] [Related]  

  • 56. On-demand droplet loading for automated organic chemistry on digital microfluidics.
    Shah GJ; Ding H; Sadeghi S; Chen S; Kim CJ; van Dam RM
    Lab Chip; 2013 Jul; 13(14):2785-95. PubMed ID: 23670035
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Hydrodynamically driven self-assembly of giant vesicles of metal nanoparticles for remote-controlled release.
    He J; Wei Z; Wang L; Tomova Z; Babu T; Wang C; Han X; Fourkas JT; Nie Z
    Angew Chem Int Ed Engl; 2013 Feb; 52(9):2463-8. PubMed ID: 23362104
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Droplet-based microfluidic systems for high-throughput single DNA molecule isothermal amplification and analysis.
    Mazutis L; Araghi AF; Miller OJ; Baret JC; Frenz L; Janoshazi A; Taly V; Miller BJ; Hutchison JB; Link D; Griffiths AD; Ryckelynck M
    Anal Chem; 2009 Jun; 81(12):4813-21. PubMed ID: 19518143
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Microfluidic chemical analysis systems.
    Livak-Dahl E; Sinn I; Burns M
    Annu Rev Chem Biomol Eng; 2011; 2():325-53. PubMed ID: 22432622
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Monitoring spatial distribution of ethanol in microfluidic channels by using a thin layer of cholesteric liquid crystal.
    Sutarlie L; Yang KL
    Lab Chip; 2011 Dec; 11(23):4093-8. PubMed ID: 22030694
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.