BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 25058939)

  • 1. Overcoming the aggregation problem: a new type of fluorescent ligand for ConA-based glucose sensing.
    Cummins BM; Li M; Locke AK; Birch DJS; Vigh G; Coté GL
    Biosens Bioelectron; 2015 Jan; 63():53-60. PubMed ID: 25058939
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PEGylation of concanavalin A to improve its stability for an in vivo glucose sensing assay.
    Locke AK; Cummins BM; Abraham AA; Coté GL
    Anal Chem; 2014 Sep; 86(18):9091-7. PubMed ID: 25133655
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High Affinity Mannotetraose as an Alternative to Dextran in ConA Based Fluorescent Affinity Glucose Assay Due to Improved FRET Efficiency.
    Locke AK; Cummins BM; Coté GL
    ACS Sens; 2016 May; 1(5):584-590. PubMed ID: 28529973
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimization of a Concanavalin A-based glucose sensor using fluorescence anisotropy.
    Cummins BM; Garza JT; Coté GL
    Anal Chem; 2013 Jun; 85(11):5397-404. PubMed ID: 23627407
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Polarity-Sensitive Far-Red Fluorescent Probe for Glucose Sensing through Skin.
    Colvin L; Tu D; Dunlap D; Rios A; Coté G
    Biosensors (Basel); 2023 Aug; 13(8):. PubMed ID: 37622875
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro long-term performance study of a near-infrared fluorescence affinity sensor for glucose monitoring.
    Ballerstadt R; Polak A; Beuhler A; Frye J
    Biosens Bioelectron; 2004 Mar; 19(8):905-14. PubMed ID: 15128110
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Concanavalin A for in vivo glucose sensing: a biotoxicity review.
    Ballerstadt R; Evans C; McNichols R; Gowda A
    Biosens Bioelectron; 2006 Aug; 22(2):275-84. PubMed ID: 16488598
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Homogeneous detection of concanavalin A using pyrene-conjugated maltose assembled graphene based on fluorescence resonance energy transfer.
    Chen Q; Wei W; Lin JM
    Biosens Bioelectron; 2011 Jul; 26(11):4497-502. PubMed ID: 21621405
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of glucose-responsive bioconjugated gel particles using surfactant-free emulsion polymerization.
    Kawamura A; Hata Y; Miyata T; Uragami T
    Colloids Surf B Biointerfaces; 2012 Nov; 99():74-81. PubMed ID: 22078928
    [TBL] [Abstract][Full Text] [Related]  

  • 10. "On-off" switchable electrochemical affinity nanobiosensor based on graphene oxide for ultrasensitive glucose sensing.
    Huang J; Zhang L; Liang RP; Qiu JD
    Biosens Bioelectron; 2013 Mar; 41():430-5. PubMed ID: 23026685
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A supramolecular approach to protein labeling. A novel fluorescent bioassay for concanavalin a activity.
    Rusin O; Král V; Escobedo JO; Strongin RM
    Org Lett; 2004 Apr; 6(9):1373-6. PubMed ID: 15101745
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tunable aggregation by competing biomolecular interactions.
    Duncan GA; Bevan MA
    Langmuir; 2014 Dec; 30(50):15253-60. PubMed ID: 25458784
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorescence Anisotropy-Based Assay for Characterization of Ligand Binding Dynamics to GPCRs: The Case of Cy3B-Labeled Ligands Binding to MC
    Veiksina S; Tahk MJ; Laasfeld T; Link R; Kopanchuk S; Rinken A
    Methods Mol Biol; 2021; 2268():119-136. PubMed ID: 34085265
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new biosensor for glucose determination in serum based on up-converting fluorescence resonance energy transfer.
    Peng J; Wang Y; Wang J; Zhou X; Liu Z
    Biosens Bioelectron; 2011 Oct; 28(1):414-20. PubMed ID: 21852101
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computer simulation of the Receptor-Ligand Interactions of Mannose Receptor CD206 in Comparison with the Lectin Concanavalin A Model.
    Zlotnikov ID; Kudryashova EV
    Biochemistry (Mosc); 2022 Jan; 87(1):54-69. PubMed ID: 35491020
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Binding Assays Using a Benzofurazan-Labeled Fluorescent Probe for Estrogen Receptor-Ligand Interactions.
    Komatsu S; Ohno KI; Fujimura T
    Chem Pharm Bull (Tokyo); 2020; 68(10):954-961. PubMed ID: 32999147
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Affinity-based turbidity sensor for glucose monitoring by optical coherence tomography: toward the development of an implantable sensor.
    Ballerstadt R; Kholodnykh A; Evans C; Boretsky A; Motamedi M; Gowda A; McNichols R
    Anal Chem; 2007 Sep; 79(18):6965-74. PubMed ID: 17702528
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular distribution sensing in a fluorescence resonance energy transfer based affinity assay for glucose.
    Rolinski OJ; Birch DJ; McCartney L; Pickup JC
    Spectrochim Acta A Mol Biomol Spectrosc; 2001 Sep; 57(11):2245-54. PubMed ID: 11603841
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural and functional consequences of peptide-carbohydrate mimicry. Crystal structure of a carbohydrate-mimicking peptide bound to concanavalin A.
    Jain D; Kaur K; Sundaravadivel B; Salunke DM
    J Biol Chem; 2000 May; 275(21):16098-102. PubMed ID: 10821862
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Budded baculoviruses as a tool for a homogeneous fluorescence anisotropy-based assay of ligand binding to G protein-coupled receptors: the case of melanocortin 4 receptors.
    Veiksina S; Kopanchuk S; Rinken A
    Biochim Biophys Acta; 2014 Jan; 1838(1 Pt B):372-81. PubMed ID: 24095674
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.