These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 2505900)

  • 1. Crystal dissolution of biological and ceramic apatites.
    Daculsi G; LeGeros RZ; Mitre D
    Calcif Tissue Int; 1989 Aug; 45(2):95-103. PubMed ID: 2505900
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microbeam electron diffraction and lattice fringe studies of defect structures in enamel apatites.
    Lee DD; LeGeros RZ
    Calcif Tissue Int; 1985 Dec; 37(6):651-8. PubMed ID: 3937591
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent uses of electron microscopy in the study of physico-chemical processes affecting the reactivity of synthetic and biological apatites.
    Featherstone JD; Nelson DG
    Scanning Microsc; 1989 Sep; 3(3):815-27; discussion 827-8. PubMed ID: 2617263
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Apatite formation on three kinds of bioactive material at an early stage in vivo: a comparative study by transmission electron microscopy.
    Neo M; Nakamura T; Ohtsuki C; Kokubo T; Yamamuro T
    J Biomed Mater Res; 1993 Aug; 27(8):999-1006. PubMed ID: 8408128
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of fibronectin during biological apatite crystal nucleation: ultrastructural characterization.
    Daculsi G; Pilet P; Cottrel M; Guicheux G
    J Biomed Mater Res; 1999 Nov; 47(2):228-33. PubMed ID: 10449634
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Some ultrastructural aspects of biological apatite dissolution and possible role of dislocations.
    Daculsi G; Kerebel B
    J Biol Buccale; 1977 Sep; 5(3):203-18. PubMed ID: 122695
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transformation of biphasic calcium phosphate ceramics in vivo: ultrastructural and physicochemical characterization.
    Daculsi G; LeGeros RZ; Nery E; Lynch K; Kerebel B
    J Biomed Mater Res; 1989 Aug; 23(8):883-94. PubMed ID: 2777831
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystal morphology and decalcification patterns compared in rat and human enamel and synthetic hydroxyapatite.
    Simmelink JW; Abrigo SC
    Adv Dent Res; 1989 Sep; 3(2):241-8. PubMed ID: 2561783
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [High-resolution electron microscopy of carious dissolution of enamel nano-crystals].
    Zhao W; Wang SZ; Fan MW; Chen Z; Yu SF
    Zhonghua Kou Qiang Yi Xue Za Zhi; 2003 Nov; 38(6):408-10. PubMed ID: 14703468
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A high-resolution electron microscope study of synthetic and biological carbonated apatites.
    Nelson DG; McLean JD; Sanders JV
    J Ultrastruct Res; 1983 Jul; 84(1):1-15. PubMed ID: 6887321
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Observations on structural features and characteristics of biological apatite crystals. 9. Observation on dissolution of carious enamel crystals.
    Ichijo T; Yamashita Y; Terashima T
    Bull Tokyo Med Dent Univ; 1994 Mar; 41(1):1-13. PubMed ID: 8137451
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Petal-like apatite formed on the surface of tricalcium phosphate ceramic after soaking in distilled water.
    Lin FH; Liao CJ; Chen KS; Su JS; Lin CP
    Biomaterials; 2001 Nov; 22(22):2981-92. PubMed ID: 11575472
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrastructure, morphology and crystal growth of biogenic and synthetic apatites.
    Heywood BR; Sparks NH; Shellis RP; Weiner S; Mann S
    Connect Tissue Res; 1990; 25(2):103-19. PubMed ID: 2175692
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of fluoride on human enamel and selachian enameloid in vitro: a high-resolution TEM and electron diffraction study.
    Daculsi G; Kerebel LM; Kerebel B
    Calcif Tissue Int; 1981; 33(1):9-13. PubMed ID: 6780160
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lattice fringe studies of (100) defects in enamel crystallites.
    Lee DD
    J Microsc; 1989 Jun; 154(Pt 3):209-14. PubMed ID: 2769744
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Particle-Attachment-Mediated and Matrix/Lattice-Guided Enamel Apatite Crystal Growth.
    Jokisaari JR; Wang C; Qiao Q; Hu X; Reed DA; Bleher R; Luan X; Klie RF; Diekwisch TGH
    ACS Nano; 2019 Mar; 13(3):3151-3161. PubMed ID: 30763075
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High resolution electron microscopic technique applied to the detection of distortions in apatite crystallites during amelogenesis.
    Voegel JC; Weiss MP; Frank RM
    J Biol Buccale; 1981 Jun; 9(2):183-91. PubMed ID: 6943143
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Magnesium and carbonate in enamel and synthetic apatites.
    LeGeros RZ; Sakae T; Bautista C; Retino M; LeGeros JP
    Adv Dent Res; 1996 Nov; 10(2):225-31. PubMed ID: 9206341
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrastructural study of calculus-enamel and calculus-root interfaces.
    Rohanizadeh R; Legeros RZ
    Arch Oral Biol; 2005 Jan; 50(1):89-96. PubMed ID: 15598421
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrastructural comparison of dissolution and apatite precipitation on hydroxyapatite and silicon-substituted hydroxyapatite in vitro and in vivo.
    Porter AE; Botelho CM; Lopes MA; Santos JD; Best SM; Bonfield W
    J Biomed Mater Res A; 2004 Jun; 69(4):670-9. PubMed ID: 15162409
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.